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Executive summary 
This project generated estimates of net migration (NM) by ecosystem over the four decades 
from 1970 to 2010. Because of the lack of globally consistent data on migration, indirect 
estimation methods were used. We relied on a combination of data on spatial population 
distribution for five time slices (1970, 1980, 1990, 2000 and 2010) and subnational rates of 
natural increase in order to derive estimates of NM on a 30 arc-second (~1 km) grid cell basis, 
which were then summed by ecosystem. We ran 13 geospatial NM estimation models based 
on outputs from the same number of imputation runs for urban and rural rates of natural 
increase. We took the average and standard deviation of the runs to produce the results 
described in the ‘Results’ section and Appendix A (see Maps A1–A4 for maps of the results by 
decade). 

In summary, and noting that ecosystems are not mutually exclusive (the same grid cell can be 
counted for example in cultivated, island and coastal ecosystems), we found that: 

• Most outmigration occurs over large areas, reflecting its largely rural character, whereas 
areas of net inmigration are typically smaller, which reflects its largely urban character. 

• Coastal ecosystems (as defined circa 2000) have experienced the highest levels of net 
inmigration, with levels ranging from ~30 million (m) persons in the 1970s to 1980s to +82m in 
the 2000s. 

• Inland water ecosystems have experienced the second highest levels of net inmigration, with 
levels ranging from +23m in the 1980s to +53m in the 2000s. 

• Mountain, forest, cultivated and dryland ecosystems all show high levels of net outmigration, 
ranging from –12m to –43m across all decades. Mountain ecosystems have the highest net 
outmigration over the four decades, totalling –126m. The patterns across these ecosystems 
are consistent with global trends in rural-to-urban migration over the past 40 years. 

• Considering their generally small populations, island ecosystems have high levels of 
outmigration, ranging from –3m to –4.5m. 
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• The largest population countries such as China and India tend to drive global results for all 
the ecosystems found in those countries. 

• There are large standard deviations for the Asia model runs, especially in the decade from 
2000 to 2010. This is due to small variations in rates of natural increase generated by the 
model runs, which, when multiplied by large populations, result in large standard deviations. 

There are a number of uncertainties and potential sources of error in these estimates. The 
uncertainties include measurement errors in the spatial and tabular datasets used, potential 
biases in the results of the imputed time series of urban and rural rates of natural increase and 
issues arising from the simplifying assumptions we applied in our processing steps. These 
uncertainties are addressed in greater detail in the ‘Evaluation of results and next steps’ 
section, along with efforts to evaluate our results. However, we note here that the lack of 
observed population distribution data from 2010 round censuses means that the results for the 
2000s are subject to greatest uncertainty. 

Introduction 
Under this project, we generated estimates of decadal net migration (NM) flows by ecosystem 
type for the period 1970–2010. This report provides a brief review of the literature on migration 
by ecosystem type, then describes the data and methods and then the results of this modelling 
exercise. Evaluation of the results and a discussion of uncertainties and the steps that would 
need to be taken to reduce them are addressed in the ‘Evaluation of results and next steps’ 
section. 

The absence of globally accurate data on migration flows means that indirect estimation 
methods are necessary in order to estimate the number of net migrants for any given 
ecosystem over any given time period (Appendix D describes the problems with currently 
available migration data). Given the lack of direct measurements, our task was to develop 
estimates of NM using the data that are currently available – time-series population distribution 
grids combined with United Nations (UN) and other data on birth and death rates. We began 
with a high spatial resolution gridded population dataset for the year 2000, and backcast and 
projected this grid using consistent rates so as to obtain population grids for the years 1970, 
1980, 1990, 2000 and 2010. We then calculated the change in population per decade per grid 
cell by subtracting the decadal grid at the beginning of each decade from the decadal grid at 
the end of each decade. The result was a decadal population change grid. We then applied 
decadal rates of natural increase (birth rates minus death rates) to the population grids at the 
beginning of each decade to create estimates of natural increase per grid cell over the decade. 
Finally, we subtracted the natural increase grid from the population change grid for each 
decade, which yields a residual which we termed ‘NM’1. We recognise that the residual is in 
fact NM plus some unknown error term. We sought to reduce this error term as much as 
possible by applying differential rates of natural increase across an urban–rural population 
density gradient based on a combination of observed and imputed rates. 

 

1 Note that our methods cannot distinguish between international and domestic (or internal) migration, although we 
do constrain country-level migration to equal UN estimates. This means that in effect the net migration we 
measure includes both international and domestic migration. 
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The ecosystem categories used in this analysis were drawn from the Millennium Ecosystem 
Assessment (MA), which developed a global map of ecosystems based on categories such as 
drylands, mountains, cultivated areas and coastal areas, each with different numbers of 
subcategories (see Box 1 and Table A1). The categories were not mutually exclusive, so NM to 
a coastal dryland would count in both drylands and coastal categories. Although some 
ecosystem boundaries (namely forest and cultivated systems) have undoubtedly changed over 
four decades, there is no ecosystem boundary dataset for earlier decades, but the 
categorisation of ecosystems was sufficiently generalised that this may mitigate this 
shortcoming. 

Box 1: Millennium Ecosystem Assessment reporting categories 
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Source: Hassan et al. (2005). A technical description of the methods used to derive these layers is found in 
Appendix Table 2.2 of Defries et al. (2005). 
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Literature review 
Ecosystems are expected to be affected by climate-change processes such as warmer 
temperatures, rainfall variability, extreme events and sea-level rise. This will have major effects 
on human populations as ecosystem services are key providers of life's basic needs. Any 
change in their characteristics has the potential of affecting livelihoods, income and migration 
trends (Corvalan et al., 2005: 2; Warner et al., 2009; Adamo and de Sherbinin, forthcoming 
2011), and may also lead to civil or interstate conflict, which itself is a precursor to population 
displacements (Campbell et al., 2007; WBGU, 2007). 

In 1990, the Intergovernmental Panel on Climate Change (IPCC)’s First Assessment Report 
already suggested that the greatest effect of climate change on society could be human 
migration, meaning involuntary forms of displacement and relocation (OSCE, 2005). In 2007, 
the IPCC’s Fourth Assessment Report highlighted the significance of already established 
migrant networks and patterns as part of the inventory of adaptation practices, options and 
capacities available to face climate-change impacts (Adger et al., 2007: 736). 

Climate change and ecosystem impacts will create different kinds of migration responses. 
Studies have shown that environmental displacements take place mostly within national 
boundaries (EACH-FOR, 2009; Adamo and de Sherbinin, forthcoming). Nevertheless, climate 
change will probably cause an up-tick in international migration not only for those countries 
most often cited (e.g. small island states) but also for those that will experience increasing 
frequency in climate hazards such as drought and floods (Hugo, 1996; Brown, 2007; ADB, 
2011). 

In this section we review the literature on migration and ecosystems, starting with a brief 
overview and then turning to a presentation of the few studies that have considered migration 
by different ecosystem type. For the most part, this literature focuses on migration associated 
with processes such as land cover change or loss of ecosystem function, which in turn are 
driven by processes of agricultural expansion, economic development and globalisation. 
Suitability for cultivation or development are the primary factors associated with high 
inmigration, whereas lack of suitability or isolation from markets tends to fuel outmigration. In 
their meta-analysis of 108 cases of agricultural intensification, Keys and McConnell (2005) 
described several cases of large-scale migrations or resettlements associated with the 
establishment of plantations (Schelhas, 1996), the construction of roads (Conelly, 1992) or 
political events (Kasfir, 1993). There is comparatively less written on the inherent 
characteristics of ecosystems that make them attractive to migrants – although certainly 
agricultural and development potential are part of the characteristics that make certain 
ecosystems more or less hospitable for newcomers. 

Migration patterns and ecosystems 

From an ‘ecosystem’ point of view, human migration is a driver of ecosystem, biodiversity and 
land-use changes (Meyerson et al., 2007). These changes range from deforestation due to 
clearing for pastures and crops to urban and suburban sprawl and the abandonment of rural 
areas (e.g. Magdalena, 1996; Aide and Grau, 2004; Geist and Lambin, 2004). In turn, changes 
in ecosystems (particularly in the quantity and quality of services) are among the many drivers 
of migration (e.g. Henry et al., 2004; de Sherbinin et al., 2007a; Adamo and de Sherbinin, 
forthcoming). Examples include declining land productivity and changing rainfall patterns. 
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Heterogeneity, however, is the rule when dealing with migration, ecosystems and climate-
change effects (Warner et al., 2009; ADB, 2011). Different ecosystems present different 
opportunities and challenges to human settlement. Regional diversity is clear in the 
mechanisms that link environment and migration dynamics, and it is also evident in terms of 
data availability and accuracy of estimates of environmentally induced displacements. 

This uneven distribution requires a mixed approach combining ecosystems with national and 
subnational boundaries in order to account for local dynamics and policy developments in 
assessing environmental displacement. For example, cultivated systems and coastal 
ecosystems tend to show higher human well-being, while drylands display lower human well-
being (Levy et al., 2005), thus resulting in different ‘pull’ and ‘push’ factors for migration flows. 

Urbanisation (the proportion of people living in urban settlements) seems to be the exception to 
the heterogeneity rule. The redistribution of population toward urban areas is evident in most 
ecosystems (Aide and Grau, 2004; Grau and Aide, 2008). This trend is most visible in coastal 
areas (McGranahan et al., 2007) but is also evident in drylands (Balk et al., 2009; Barbieri et 
al., 2010), forests (Uriarte et al., 2010) and mountains (Riebsame et al., 1996). Rural–urban 
migration often fuels urban growth, but as cities become larger the component of growth due to 
natural increase is often greater than that due to migration (Montgomery, 2008). 

Coastal areas 
A growing proportion of the world’s population (about 40% in 1995) lives in coastal areas. 
Settlements are increasingly urban (Curran, 2002; Balk et al., 2009), although in some 
countries (Vietnam, Bangladesh, Egypt, Mauritania, Cambodia) a large proportion of the rural 
population also lives in coastal areas (McGranahan et al., 2007). 

A large part of this accelerated population growth in coastal areas is attributed to inmigration 
(Curran, 2002; Agardy and Alder, 2005). Population mobility in coastal areas includes 
permanent migration, seasonal labour migration and tourists. This attraction, or ‘pull’ effect, of 
coastal areas derives from their endowment of natural resources (for example natural 
amenities, exploitation of mangroves, fishing), communication and transportation facilities, and 
diversity of work opportunities. On the other hand, rural communities in coastal areas, 
particularly those heavily dependent on natural resources, have also witnessed outmigration 
owing to changes in the original conditions (e.g. Hamilton and Butler, 2002) such as depletion 
of fisheries. 

Low elevation coastal zones are particularly vulnerable to storms, storm surges and sea-level 
rise (McGranahan et al., 2007), and population growth in coastal areas places more people 
potentially in harm’s way, which could mean that migration out of the near coastal areas will 
increase in the future (Balk et al., 2009; Wheeler, 2011). This already occurred in the wake of 
Hurricane Katrina (de Sherbinin et al., 2007b). 

Drylands 
Drylands (arid, semiarid and dry subhumid areas) cover about 40% of the Earth’s land surface 
and house more than 2 billion people, 90% of them in developing countries (IIED, 2008). 
Overall, population growth is higher and human well-being is lower among drylands 
populations (Levy et al., 2005; Safriel and Adeell, 2005; IIED, 2008). Drylands tend to be less 
urbanised than coastal ecosystems, with approximately 45% of the population living in urban 
areas (Balk et al., 2009). 
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Climate-change threats to drylands include increasing water shortages (especially in semi-arid 
and dry subhumid areas) and frequency of droughts, and declining flows in rivers depending on 
glacier melt (IIED, 2008; Adamo and de Sherbinin, forthcoming). Other areas may witness an 
increase in rainfall, although concomitant increases in temperature may offset the benefits 
(Safriel and Adeell , 2005). 

Population mobility in drylands is a very common household livelihood strategy, composed of 
different types of movements (permanent, temporary and seasonal) into, outside and within 
arid lands (Rain, 1999). The MA concluded (with medium certainty) that droughts and land 
degradation (particularly losses in productivity) were key factors behind migration from drylands 
(Safriel and Adeel, 2005). Inter- and intra-annual changes in water availability due to climate 
change are expected to have an effect on migration patterns (e.g. Barbieri et al., 2010; Feng et 
al., 2010). 

Mountains 
In developed countries, some mountain zones have attracted migrants who are seeking the 
amenities associated with mountain areas. For example, migration to the Rocky Mountains in 
the USA increased significantly in the last two decades (e.g. Riebsame et al., 1996). According 
to Shumway and Otterstrom (2001): 

In the Mountain West, a number of counties with service-based economies are located in 
areas with high levels of environmental or natural amenities, creating what has been 
termed the ‘New West.’ Migration to the rural parts of the Mountain West, and the income 
transfers associated with migration, are increasingly concentrated within these New West 
counties. 

Shumway and Otterstrom, 2001:492. 

Similar patterns have been seen in the Alps, with migration being spurred through the 
development of resorts and retirement communities, and also in advanced developing 
countries, for example in Chile (Hidalgo et al., 2009) and in Argentina (Gonzalez et al., 2009). 
In other mountain zones of the developed world, such as certain regions of the Massif Central 
in France and of Appalachia in the USA, there has been outmigration and depopulation (André, 
1998). 

In much of the developing world, mountains have been areas of net outmigration and 
population loss as people flee so-called ‘spatial poverty traps’ (Scott, 2006) – areas with low 
market access and poor infrastructure – for regions with greater market penetration and 
infrastructure (Körner and Ohsawa, 2005; Xu, 2008; Valdivia et al., 2010). 

Forests and cultivated ecosystems 
Migration to the agricultural frontier has been one of several contributors to deforestation in the 
tropics and dry forest areas, acting in combination with agriculture, pasture expansion and 
commercial logging (Geist and Lambin, 2002; Carr, 2009). In the world’s iconic forest frontier, 
the Amazon, migration processes in recent years have reversed owing to factors linked to 
urbanisation and modernisation of agriculture, and this has led in some cases to forest 
recovery (Aide and Grau, 2004; Grau and Aide, 2008; Barbieri et al., 2009). 

Depending on land tenure, type of agriculture (commercial or subsistence), the degree of 
modernisation, the relationship with markets, etc., cultivated ecosystems could either attract or 
expulse population. For example, the expansion of soybeans and biofuels – which usually 
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require minimal labour inputs – has been associated with outmigration of farm labourers’ and 
smallholders’ households, while the adoption of labour-intensive farm systems are associated 
with population retention and seasonal migration (Craviotti and Soverna, 1999; Grau and Aide, 
2008). 

Methodology 
As stated earlier, the lack of subnational migration data for the 40-year time span considered 
by this project means that we needed to use indirect estimation methods to derive spatially 
explicit estimates of migration. Our basic methods can be summarised as follows, with details 
presented in the remainder of the section. 

1. We utilised the HYDE (History Database of the Global Environment) population grids for 
the years 1970, 1980, 1990 and 2000 to create one-degree grids representing the rates 
of change in population for each decade. This makes optimal use of the HYDE dataset, 
which is produced to provide a consistent decadal time series of population distribution 
over several centuries. 

2. We applied those rates to the Global Rural–Urban Mapping Project (GRUMP) (CIESIN 
et al., 2011) population grids for 2000, producing ‘backcast’ grids to 1970, 1975, 1980, 
1985, 1990 and 1995, and forecast grids to 2005 and 2010. This ensured that the global 
population dataset with the greatest number of census inputs was utilised to spatially 
allocate population in one time slice, and also enabled the analysis to be conducted at 
the higher resolution of the GRUMP product (30 arc-second resolution for GRUMP vs. 5 
arc-minute resolution for HYDE)2. 

3. We adjusted the global grids to match country totals from the UN population estimates 
for the given year. This was done proportionally by calculating the ratio of the backcast 
and forecast grids summed by country for each time slice to the UN estimate for each 
country for that time slice and then applying that ratio to the population count grids for 
each year. 

4. In order to estimate that portion of population growth that is due to natural increase 
(births minus deaths) for each grid cell in each decadal period, we applied subnational 
observed and imputed rates of natural increase (crude birth rates minus crude death 
rates) to the population grid at the beginning of each time to come up with decadal 
estimated natural increase. Similar to step 3 above, we adjusted the natural increase 
grids to match the UN estimates of natural increase at the country level. 

5. Next, for each decade, we subtracted the population in time 1 (e.g. 1970) from the 
population in time 2 (e.g. 1980) in order to come up with the change in population in that 
grid cell, and then subtracted the natural increase in that grid cell (from step 4) in order 
to come up with an estimate of NM for that grid cell in that decade. This is based on the 
population balancing equation: 

Population growth = (births – deaths) + (NM) 

 

2 Table A2 presents a conversion of grid cell resolutions in east–west arcs to distances. 
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Which, when NM is unknown, can be solved as follows: 

NM = population growth – (births – deaths) 

6. Using zonal statistics in ArcGIS, we produced aggregations by MA ecosystems (six core 
ecosystems and 34 subsystems) to come up with estimates of NM per decade per 
ecosystem (see Table A1). We retained country identifiers so that analyses can be 
performed for any country–ecosystem combination (e.g. drylands of Africa). 

Detailed data and methods 

To conduct this modelling exercise, we chose to use the GRUMP version 1 (CIESIN et al., 
2011) population grid, which represents an urban reallocation of the Gridded Population of the 
World v.3 (GPWv3) using night-time lights, other urban spatial extents and an algorithm that 
‘pulls’ population from larger administrative units out of rural areas and into urban areas (Balk 
et al., 2004, 2010). The alternative high-resolution gridded population data product is Oak 
Ridge National Laboratory’s Landscan 2008 (earlier versions are not available), which 
represents a modelled population surface at a 30 arc-second resolution. Although Landscan 
uses 8,205,582 census inputs for the USA, outside the USA it only uses census data from only 
79,590 administrative units and then applies a multi-layered, dasymetric, spatial modelling 
approach to reallocate populations based on layers representing land use/land cover, high-
resolution satellite imagery, transportation networks, elevation and slope, among others (Bright, 
personal communication). The precise reallocation algorithm is not documented. 

In contrast, GRUMP is based on population data from GPWv3, which uses 338,863 census 
units outside of the USA (Table A3), and is only lightly modelled using documented methods. It 
is worth noting, however, that the average population reporting unit size varies considerably by 
region, from 9,433 and 7,042 km2 in Africa and Asia, respectively, to 5,744 km2 in South 
America, 2,516 km2 in Europe and 1,094 km2 in the rest of the Americas. This variability in the 
size of census unit is somewhat mitigated by the algorithm that pulls populations into urban 
areas, but nevertheless, in developing regions, and regions with large areas in sparsely 
populated areas of drylands, there is generally less certainty regarding the spatial location of 
populations, and this will affect estimates of NM (see Appendix E). 

To ensure that we had consistent rates of population change over the four decadal periods, we 
applied a grid representing the rate of population change per decade derived from the History 
Database of the Global Environment version 3.1 (HYDEv3.1) population grids for the years 
1970, 1980, 1990 and 2000. The HYDEv3.1 grids are adjusted at the country level to match the 
country totals from the UN Population Division’s World Population Prospects: 2008 Revision 
(UN, 2009). A detailed description of the HYDE dataset and its evolution is provided in 
Appendix B. Although HYDE is distributed on a 5 arc-minute resolution, the rates were 
calculated on a one-degree resolution in order to average over a wider area and reduce the 
impact of decade-on-decade population variability inherent in higher resolution grid cells. A 
moving window was also applied in order fill in gaps in the HYDE-derived rates for areas that 
had no population in HYDE but observed population values in GRUMP. 

One drawback of HYDE is that many small island states are not included in the dataset (see 
Table B1), meaning that our coastal and island ecosystem estimates are not taking into 
account these countries. A list of missing states is included at the end of Appendix B. We have 
tallied NM data from alternate sources for these islands (UN, 2009; Census Bureau’s 
International database) and have provided separate tables of these results (Table A14). 
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The GRUMP population count grid for the year 2000 was ‘backcast’ to 1970, 1980 and 1990, 
and was projected to the year 2010 by multiplying the HYDE rates by the population grids. For 
the most part, negative rates were used for backcasting and positive rates for forecasting, but 
in selected areas of depopulation over the course of each decade the sign for the rates was 
reversed. In each case, we adjusted the gridded country totals so that they equal the UN World 
Population Prospects: 2008 Revision (UN, 2009) country population totals for each time period. 
In this way, all population data were consistent with the UN World Population Prospects: 2008 
Revision, which represents a harmonised time series of country-level demographic data3. A 
population change grid for each decade was derived by subtracting the population at the 
beginning of the time period (e.g. 1970) from the population at the end of the time period (e.g. 
1980). 

In a pilot effort, we applied national level rates of natural increase (crude birth rates minus 
crude death rates) from the World Population Prospects (UN, 2009) to population grids to 
derive decadal estimates of natural increase. However, this approach ignored the fact that 
there is substantial subnational variation in rates of natural increase (RNIs). Culling data on 
urban and rural crude birth and death rates (CBRs and CDRs, respectively) from the UN 
Demographic Yearbooks4 published from 1970 to 2008, and deriving urban and RNIs (CBRs 
minus CDRs), we found a high degree of variation within countries. Figure 1 shows the ratio of 
urban to rural RNIs to be within the range of +2 to –2, which represents 85% of the country–
year combinations for which we had observed data (900 out of 1,070 cases). There is no 
clustering around 1, which is what one would expect if there were no difference in urban and 
rural rates. 

We hypothesised that RNIs can be predicted based on where a particular grid cell lies on an 
urban to rural gradient as measured by population density. We tested this hypothesis for 
subnational data on RNIs for two countries: China and the USA. For China, we used data for 
2,315 districts for 1989–90 from the CIESIN China dimensions data collection (CITAS et al., 
1997) and found a fairly clear gradient from higher RNIs in low-density rural areas to lower 
RNIs in high-density urban areas (Figure 2a). For the China dataset, the mean RNI was 17 per 
1,000 population, with a standard deviation of 5.2. For the USA, we used data for 3,194 
counties and county equivalents from the US Census Bureau for the year 2000 and found that, 
contrary to China, RNIs tend to increase over the density gradient, rising from around 20 per 
1,000 to more than 30 per 1,000 for the top three deciles in terms of population density (Figure 
2b). For the US dataset, the mean RNI was 25 per 1,000 population with a standard deviation 
of 4.7. 

 

3 We utilised year 2000 boundaries and country definitions for all processing steps. Countries that were separated 
in 1970, such as East and West Germany, were treated as one entity; countries that were part of larger countries 
in the 1970s such as the republics of the former USSR and many Eastern European countries were treated as 
though they were separate entities throughout all four decades. 

4 The statistics presented in the UN Demographic Yearbooks (1972–2008)are national data provided by official 
statistical authorities unless otherwise indicated. The primary source of data for the Yearbook is a set of 
questionnaires sent annually by the UN Statistics Division to over 230 national statistical services and other 
appropriate government offices. Data reported on these questionnaires are supplemented, to the extent possible, 
with data taken from official national publications, official websites and through correspondence with national 
statistical services. In the interest of comparability, rates, ratios and percentages have been calculated by the 
Statistics Division of the UN, except for CBR and CDR for some countries or areas as noted. 



MR4 15 

Figure 1: Ratio of urban to rural rates of natural increase. 

 

Source: UN Demographic Yearbook data (1972–2008). 

The empirical data confirmed our hunch that there is a systematic relationship between RNIs 
and population density, although that relationship varies by development level (Figure 3). We 
therefore felt that it was preferable to assume some level of subnational variation, even if 
population density is an imperfect predictor, rather than assume that RNIs are constant 
throughout a country. This presented a further challenge, however, because of the lack of a 
globally consistent database of urban and rural RNIs by country that covers the 40 year time 
period from 1970 to 2010. As a significant subcomponent of this project, we created a 
database of urban and rural CBRs and CDRs based on available data and imputation methods. 
We did this by compiling data on urban and rural CBRs and CDRs from the UN Demographic 
Yearbooks and the Demographic and Health Surveys (http://www.measuredhs.com/)(CBRs 
only), and then imputing the missing values. To impute missing values (more than 32,000 
country/year urban and rural CBRs and CDRs), we combined 5,016 observed values with as 
many auxiliary variables as we could obtain that might help explain patterns of urban and rural 
birth and death rates (see Table C1). Two models were used, Multiple Imputation (MI) and 
Amelia, and the methods and results are described in Appendix C. Although the results are 
subject to uncertainties (see Appendix C and the ‘Evaluation of results and next steps’ section), 
and although the results were generally better for the CBRs than the CDRs (which proved 
more difficult to predict from available data), we feel this approach is better than ignoring 
subnational variation in RNIs. We obtained a total of 13 imputation runs – eight runs from the 
mi package associated with the R statistical language and environment and five runs from the 
Amelia cross-sectional time series imputation package, which is also available for R. 
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The USA represented a special case of a demographically significant country with no observed 
urban/rural rates. Although the USA does not report these data to the Demographic Yearbook, 

county level data on births and death rates by decade are available from the US Census 
Bureau. Given this special case, we replaced the imputed data for the USA with estimated 
decadal rates of natural increase from the US Census Bureau. These are not truly ‘observed’ 
data, in the sense of being based on a population registry, but they come very close. We 
averaged the rates across urban and rural US counties based on population density; the top 
three deciles in county-level population density were classified as urban based on natural 
breaks in the RNIs (Figure 2b). 

Figure 2: RNIs (y-axis) across the rural–urban population density gradient: (a) China 
(1989–90) and (b) United States (2000). 

(a)  

(b)  

Rural ------------population density------------  Urban 

Once we had completed the imputations, we began a series of processing steps to develop 
spatial estimates of NM on a 30 arc-second grid. The remainder of this section details the 
processing steps we utilised in order to develop the subnational estimates of NM. 
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Step 1: Our approach assumed that there is a consistent relationship between RNI and 
population density, such that with population density information for any given grid cell, one 
could derive the RNI based on the slope and intercept (Figure 3). In order to establish the slope 
and the intercept for this relationship between RNIs and population density, we already had 
average urban and rural RNIs, so we then calculated average urban and rural population 
densities by country in order to establish the points pinning both ends of the line in Figure 3. 
The GRUMP dataset derives its urban extents from circa 1995 night-time lights satellite 
imagery for larger settlements, and for smaller settlements without night-time lights signatures 
it uses buffered points. For each country, using ArcMap 10, we calculated the average urban 

and rural population densities for 1995 based on the GRUMP delineation of urban extents. 
Using SPSS (SPSS Inc., Chicago, IL, USA), we then used these densities and the average 
decadal urban and rural ‘RNIs’ (converted to proportions that are multiplied by the decade start 
population to arrive at actual change in population over a decade) to obtain the slopes and 
intercepts for the relationship between population density and RNIs for the 1990s: 

Figure 3: Generalised relationship between population density and RNIs: (a) for most 
developing countries, and (b) for most developed countries 

(a) (b)  

Note: We did not a priori assign slopes to countries; the slopes were based on the RNI data (observed and imputed) and 
observed population densities. 

slope_1990s = (urban_rni_1990s – rural_rni_1990s)/(urban_density1995 – rural_density1995) 

intercept_1990s = urban_rni_1990s – (slope_1990s*urban_density) 

Step 2: Because we did not have urban extents for the other decades, we needed to adjust the 
slope by decade using a ‘pseudo-slope’ formula, as demonstrated for the decade of the 1970s: 

pseudo_slope_1970s = (urban_RNI_1970s – rural_RNI_1970s)/rural_RNI_1970s 

The pseudo-slope has as many properties as possible as the slope, in the absence of 
knowledge of the precise location on the x-axis of population density: (a) it varies proportionally 
with the slope, and (b) it has the same sign as the slope. In order to calculate the slope for the 
1970s, 1980s and the 2000s, we used the following formula, which in this instance calculates 
the slope for the 1970s: 

slope_1970s = slope_1990s*(pseudo_slope_1970s/pseudo_slope_1990s) 
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This adjustment factor has the following desirable characteristics: (a) if the slope needs to 
reverse sign (because the urban/rural relationship reverses), then the slope reverses sign; and 
(b) the slope changes in the right direction (if it needs to steepen, it steepens; if it needs to 
flatten, it flattens). We did not change the intercept, but instead relied upon the intercepts for 
each imputation run from the 1990s. 

Step 3: Our next step was to create an RNI grid. For each grid cell, the RNI is derived from the 
population density in that grid cell. The generic formula was as follows: 

rni_decadal_period = intercept + (slope_decadal_period*density_start_of_decade) 

Or, as examples from the imputation runs: 

rni_run1_1970s = intercept1_1990s + (slope1_1970s*density_1970s). 

rni_run12_1990s = intercept12_1990s + (slope12_1990s*density_1990s) 

Step 4: In this step, we multiplied the population counts grid and the RNI grid. At the pixel 
level, we calculated the ‘implied’ natural increase – that is the natural increase that a particular 
model run implies for that grid cell: 

ni_pixel_implied_decade = rni_decadal_period*population_gridcell 

Or, as examples from the imputation runs: 

ni_pixel_implied_run3_1990s = rni_run3_1990s*population_gridcell_1990 

Step 5: In this step, we summed the natural increase in all grid cells to come up with a country 
total of natural increase as follows: 

country_ni_implied_decade = Σ (rni_decadal_period*population_start_of_decade) 

Or, as an example, for imputation run 3 in the 1990s: 

country_ni_implied3_1990s = Σ(rni_run3_1990s*population_1990) 

Step 6: In this step, we adjusted the pixel level natural increase (ni) estimates so that they total 
to the UN ni at the country level. First, the country level summed ni was compared with the ni 
reported for that country by the World Population Prospects 2008, and the difference was 
calculated. Next, the absolute value of all pixels was summed at the country level, and a weight 
matrix was developed by dividing the absolute value of each pixel by the sum of the absolute 
value of all pixels in the country. The weights were then multiplied by the difference between 
the implied (or calculated) ni and the ni from the World Population Prospects 2008 in order to 
produce a matrix of pixel-level adjustment factors. The adjustment factors were summed with 
the initial ni estimates to produce a matrix of UN-adjusted natural increase. The generic 
formulas for this were as follows: 

ni_diff_decade = UN_country_ni_decade – country_ni_implied_decade 

country_sum_abs_ni_decade = Σ(abs(ni_pixel_implied_decade)) 

ni_pixel_weight_decade = abs(ni_pixel_implied_decade)/country_sum_abs_ni_decade 

ni_pixel_adjustment_factor_decade = ni_pixel_weight_decade*ni_diff_decade 

ni_pixel_adjusted_decade = ni_pixel_implied_decade + ni_pixel_adjustment_factor_decade 

Or, as an example, for imputation run 3 in the 1990s: 

ni_diff_decade = country_ni_1990s – country_ni_implied_run3_1990s 
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country_sum_abs_ni_run3_1990s = Σ(abs(ni_pixel_implied_run3_1990s)) 

ni_weights_run3_1990s = abs(ni_pixel_implied_run3_1990s)/country_sum_abs_ni_run3_1990s 

ni_pixel_adjustment_factor_run3_1990s = ni_pixel_weight_run3_1990s*ni_diff_run3_1990s 

ni_pixel_adjusted_decade = ni_pixel_implied_run3_1990s + ni_pixel_adjustment_factor_run3_1990
s 

Step 7: The final step involved subtracting the decadal natural increase grids (based on the 13 
imputation runs) from the decadal population change grid to arrive at a residual, and it is this 
residual that we are terming ‘NM’ at the pixel level, as follows: 

NM_pixel_decade = pop_change_pixel_decade – ni_pixel_adjusted_decade 

Or, as an example, for imputation run 3 in the 1990s: 

NM_pixel_run3_1990s = pop_change_pixel_1990s – ni_pixel_final_run3_1990s 

Through these methods we were able to estimate NM for each decade for each grid cell based 
on 13 imputation runs. We further processed these runs in order to remove rounding errors by 
ecosystem, so that the global NM totals for each decade summed to less than +/–1 persons. 
With 13 runs, we were able to develop an average and a standard deviation of the model runs 
for NM for each grid cell, which represents a ‘pseudo’ error bar for our estimates. But we must 
caution that the actual numbers represent NM plus or minus some unknown error term per grid 
cell. Nevertheless, because of the methodology we followed for this work, the sum of NM of all 
grid cells in any given country equals the total NM per country according to the World 
Population Prospects 2008. We have validated that the sum of NM on a country level is 
consistent with the UN estimates, so the only difference in spatial distribution in NM at the 
subnational level is due to the differences in slopes and intercepts generated by the urban and 
rural RNIs from the imputation runs. 

Although we were unable to precisely quantify the amount of error in our estimates, we were 
able to characterise the precision and accuracy of the data inputs. This assessment is found in 
Appendix E. Note that we could not fully assess the accuracy of the UN World Population 
Prospects 2008 dataset, and therefore any issues with those data (for example, errors in 
national decadal natural increase or NM levels) will affect our results. The UN Population 
Division (2010) provides extensive documentation, but given resource constraints we were not 
able to fully characterise the uncertainties for any country–decade combination, although we do 
assess frequency of censuses in Appendix E, which is an important underpinning of both our 
work and the UN data. 

Results 
Before describing the results, it should be emphasised again that the methodology employed 
here was experimental and the results are therefore to be treated as broad estimates of 
probable NM flows by decade. Furthermore, as mentioned above, results for the decade of the 
2000s are even more speculative because we lacked observed population distributions for 
2010 with which to generate an accurate measure of decadal population growth at the pixel 
level. We cannot put precise quantitative estimates on the levels of error (the pseudo-error bars 
produced by the imputation runs are not genuine error bars), but we do discuss the 
uncertainties and the measures that would be required to reduce them in the ‘Evaluation of 
results and next steps’ section. 
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Maps A1–A4 provide NM results by decade of our global modelling without ecosystem masks; 
Map Sets A1–A3 provide results per decade for coastal, mountain and dryland ecosystems, 
respectively. Tables A5–A13 provide results by decade for all ecosystems and then each 
ecosystem in turn, broken out by major UN regions, China and the USA. Figures A1–A7 
provide line graphs depicting the NM figures by ecosystem and region with pseudo-error bars 
(except for Figure A1) representing the standard deviation for each model. Note that the 
standard deviations are in proportion to population size, so the high standard deviations in 
model outputs for Asia reflect the larger populations in that region. 

At the request of the Foresight Project, we have also produced a map (Map Set A4) and figures 
(Figures A8–A13) for the Mediterranean region, although we do not specifically discuss the 
results here. 

All ecosystems 

Results are found in Table A5. As expected, patterns of NM by decade show regional 
variations following the classical developed/developing divide. Europe, Oceania and North 
America show a positive balance over the time period (1970–2010), while Africa, Asia, Latin 
America and the Caribbean have a negative balance. There are internal variations within 
regions: southern Africa and western Asia have positive balances; results are mixed for 
Eastern Europe; and Melanesia’s NM balance is consistently negative. 

Coastal ecosystems 

Results are found in Table A6, Figure A2 and Map Set A1. Globally, positive NM in coastal 
ecosystems is in the range of 30m in the 1970s and 1980s to 82m in the 2000s. The overall 
trend is upwards, with a more than doubling of the levels over four decades. This overall trend 
holds at the regional level, with magnitudes largely driven by the size of net migration in coastal 
ecosystems in Asia. However, there are some subregional exceptions: NM is negative over the 
whole period for coastal ecosystems located in northern Africa, Central America, the Caribbean 
and Melanesia (except for the 2000s). 

We also found high levels of coastal outmigration in Canada across the first three decades, 
ranging from –1m in the 1980s to –2.5m in the 1990s. While this corresponds to a period of 
economic downturn in the Maritime provinces owing to the collapse of cod stocks and closure 
of fisheries, and also reflects outmigration from arctic coastal communities, the 1990s net 
outmigration would represent roughly 10% of the Canadian population at that time. In the 
absence of corroborating evidence, we are not overly confident in these results5. The trend 
reversed in the 2000s (+0.9m NM), which may be due to strong international migration to 
Vancouver and vicinity. The reversal of NM in the coastal USA during the 2000s also seems 
puzzling (–1m during the decade). Hurricane Katrina displaced several hundred thousand 
people, many of whom did not return, but our data inputs would not have easily detected this. 

Looking at the map insets in Map Set A1, the high levels of net inmigration in coastal China 
stands out throughout the four decades, although there are rural coastal areas in the 1980s 

 

5 Canada was one of the countries with no data on urban/rural rates of natural increase, which is probably 
increasing the uncertainty of the results for this country. 
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and 200s that show significant outmigration. Northern Germany and the Netherlands also show 
significant areas of net inmigration. 

Mountain ecosystems (higher altitude systems) 

Results are found in Table A7, Figure A3 and Map Set A2. Global NM in the upper mountain 
ecosystems (we excluded lower montane ecosystems from our analysis) is consistently 
negative over the four decades, and this trend is quite consistent at the regional level. Negative 
balances range from –22m in the 1970s and 1980s to –43m in the 2000s, with Asian upper 
mountain ecosystems leading the way. 

Europe has had largely negative NM, mostly due to strong outmigration in southern Europe. By 
contrast, eastern Europe shows NM into mountain systems. For North America, NM is solidly 
positive for all four decades, probably reflecting the amenity migration to mountain areas 
described in the literature review. 

Cultivated ecosystems 

Results are found in Table A8 and Figure A4. Globally, cultivated ecosystems show negative 
NM over the whole period, with a negative balance of ~12m in both the 1970s and 1980s, 
peaking at –34m in the 1990s, then coming down slightly to 23m in the 2000s. This system, 
together with mountain systems, may be the source fuelling much of the coastal net 
inmigration. Africa, Asia and Latin America show negative trends in net outmigration over the 
four decades, starting negative and becoming increasingly negative. South Asia and eastern 
Asia (driven mostly by China) have extraordinarily high rates of negative NM during the 1990s 
(approximately –16.5m each). Maps A3 and A4 depict larger areas of blue (signalling strong 
outmigration) during this decade in India and China. This was a decade of extraordinary rural–
urban migration throughout the developing world, which may explain these trends. 

There are strong regional differentials, however, with developed regions generally showing 
positive NM in cultivated systems. In Europe, trends show generally positive and increasing 
NM driven entirely by Western Europe. In North America, NM is positive and increasing 
throughout the four decades. 

Forest ecosystems 

Results are found in Table A9 and Figure A5. Globally, forest ecosystems present negative NM 
for the four decades ranging from –19m in the 1970s to –39m in the 2000s. This pattern is 
pretty consistent at the regional and even subregional levels; in fact only eastern Europe, North 
America, and Australia and New Zealand show net inmigration to forest ecosystems across all 
decades. 

Asia shows strongly negative NM throughout the four decades, with levels approaching –30m 
in the 2000s. The evaluation of China results (see the ‘Evaluation of results and next steps’ 
section and Table A15) suggests that our model is probably overestimating forest outmigration 
by a factor of three during the 1990s. 
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Inland waters 

Results are found in Table A10 and Figure A6. By contrast with cultivated and forest systems, 
inland waters shows positive NM globally with a generally positive trend, peaking at +53m net 
migrants in the 2000s. As with other systems, this is closely linked to Asia’s magnitudes. Major 
growth in cities situated near inland waters in China may be driving the Asian trends. This 
tendency is consistent over time, and across regions and subregions. The exception is Latin 
America and the Caribbean, but numbers there are comparatively small with very large 
standard deviations. 

Dryland ecosystems (excluding hyperarid) 

Results are found in Table A11, Figure A7 and Map Set A3. Global NM in dryland ecosystems 
is negative over the whole period, with an abrupt increase in magnitude in the 1990s and 
2000s: from a negative NM of around –10.5m in the 1970s and 1980s to a negative NM of 
about –24m in the 1990s and –38m in the 2000s. Given the much-reported decline in dryland 
ecosystem services over the past 40 years, which was partly responsible for the creation of the 
Convention to Combat Desertification, this trend is not overly surprising. 

At the regional level, NM in developing regions is negative and trending downwards throughout 
the four decades. However, there is an unexplained positive NM in Asia in the 1980s, largely 
driven by China. This may have had something to do with government-led efforts to settle 
people and establish irrigated agriculture in the dry western portions of the country. Whatever 
led to the increase, this was quickly reversed in the 1990s and 2000s. 

By contrast with the rest of the world, North America shows strong positive NM during the 
entire period, driven largely by migration to the ‘sunbelt’ of the US south-west. This is 
consistent with observed data. 

Polar ecosystems 

Table A12 provides the results for polar ecosystems. The numbers are quite a bit smaller in 
this system, with negative levels in the 1970s (driven mostly by Canada), followed by positive 
NM for the remaining decades. This trend is almost wholly explained by NM in Europe and 
North America. The reversal of trends in the last three decades and may be partially explained 
by the development of the oil industry. 

Island ecosystems 

The results are presented in Table A13 (and associated Table A14 for islands smaller 300,000 
population). NM in island ecosystems was negative across all decades, ranging from –1.9m in 
the 2000s to a maximum of –4.5m in the 1980s. The largest levels of negative NM were in the 
Caribbean, South-East Asia and North America. The Caribbean net outmigration can be 
explained by labour market demands in North America and comparatively stagnant economies 
in the Caribbean. It is more difficult to explain the negative NM in North America, which was 
driven by spikes of island outmigration in Canada in the 1970s and the 1990s. 

Evolution of NM in East Asia is irregular, flipping from positive in the 1970s to negative in the 
1980s, and back to positive again in the last two decades. These trends are difficult to interpret 
without more local knowledge. 
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Overall assessment 

Overall, the patterns identified in the maps and tables need to be examined in light of auxiliary 
information. Some of the patterns conform to what would be expected, but given the 
methodological challenges associated with indirect estimation methods and the uncertainties in 
the data, we cannot always explain the patterns of estimated NM. We turn next to an 
evaluation of the results using observed data for rates of natural increase in China and for NM 
in the USA. 

Evaluation of results and next steps 
In this section, we first review some steps we took to evaluate the results using alternative data 
for China and the USA. Then, we identify the next steps that would be required in order to 
reduce the uncertainty in our NM estimates. 

Evaluation of results 

To evaluate our results6, we utilised alternative model runs for China based on observed rates 
of natural increase at the district level for 1990, and we utilised county-level estimates of NM 
for the USA from 2000 to 2009 produced by the US Census Bureau. 

China evaluation 
For China, we used a dataset for 2,315 districts for 1989–90 from the CIESIN China 
Dimensions Data Collection (CITAS et al., 1997), which includes rates of natural increase by 
district. We assumed these rates remain constant over the 1990s in order to obtain a 
percentage change due to a natural increase for high-density urban areas and lower density 
rural areas during the decade. Those transformed rates of natural increase were utilised to 
calculate the slope and intercept per step 1 of the processing steps. All the remaining 
processing steps were the same. 

A comparison of results obtained using the observed RNIs and the imputed RNIs is presented 
in Map A5. The map shows few differences, and the Pearson’s r coefficient for the relationship 
between the mean NM results by ecosystem presented in Table A15 is 0.896 (p<0.01). Figure 
A16 shows a scatter plot that demonstrates a very high correlation between the NM results 
obtained from observed and imputed RNIs, although the slope is steeper than a 1:1 
relationship, suggesting that for some ecosystems the NM derived from imputed RNIs is more 
strongly negative (especially cultivated, forest and mountain ecosystems), and for the coastal 
ecosystem it is much more strongly positive (26m vs. 15m for the observed RNIs). The primary 
outlier is mountain ecosystems, which show close to zero NM for the NM derived from 
observed RNIs, but a fairly high negative NM of –19m for the NM derived from imputed RNIs. 
However, overall the results suggest that for China the spatial distribution of NM is adequately 
captured by the scenarios based on the imputed RNIs. 

 

6 Note that we do not use the term ‘validation’ since validation implies that we actually have some true measure 
against which to measure errors. What we are doing here is using measures derived from alternative data sources 
to try to get a better sense of the uncertainties in the results. 
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US evaluation 
We obtained data on county-level NM from 1990–99 and 2000–09 from the US Census 
Bureau, gridded these data and then summed NM by ecosystem using zonal statistics in 
ArcGIS7. Note that there is in fact no measurement programme for migration flows in the USA, 
and the only observations made by the Census Bureau is for migrant stocks at the time of the 
decennial censuses8. So, NM levels are inferred from decennial census results and inter-
census surveys. 

For the 1990s, the Census Bureau results suggested a total NM for the USA as a whole of 
7.48m, whereas the model results showed NM for the USA of 16.16m. The UN World 
Population Prospects 2008 estimates 1990s NM for the USA at 14.54m. So, for some reason 
the US Census Bureau estimates an NM of roughly half the level of the UN and our UN-
constrained modelling effort. For this reason, the magnitude of NM by ecosystem is greater for 
our results (see Table A16), but the actual correlation in the relative magnitude of NM by 
ecosystem between our modelled results and the Census Bureau data is quite high, with an r2 
of 0.81 (Pearson’s r = 0.899; p < 0.01) (see Figure A17). Map A6 also shows a strong 
correspondence in overall patterns, recognising that our modelling effort produced results on a 
30 arc-second (~1 km) pixel basis, whereas the Census Bureau NM is spread out over entire 
counties, which in the western USA can be quite large. So, it may be that our model results 
actually do a better job of allocating NM to the urban locales where much inmigration is 
occurring, while still depicting the relatively dispersed character of rural outmigration. 

Turning to the 2000s, it is important to note that the Census Bureau data were developed prior 
to the 2010 census and therefore the data represent estimates that have a considerable levels 
of uncertainty. Total NM for the USA for the decade was estimated by the census to be at 
8.94m, whereas the UN World Population Prospects estimates a US NM of 10.73m and the 
modelling effort found a total NM for the decade of 10.44m. Map A7 shows the NM estimates 
based on the Census Bureau data and those produced by this project. As with the 1990s, the 
patterns look quite similar when accounting for the county-level reporting of the Census Bureau 
estimates. Table A16 and Figure A18 show some divergence at the ecosystem level between 
the estimates developed by this modelling effort, with, for example, the modelled results 
showing –1m NM in the coastal zone during the decade whereas the Census Bureau shows a 
more likely +1.8m. Nevertheless, in aggregate the correlation in results at the ecosystem level 
is fairly high (Pearson’s r = 0.713; p<0.05). 

Overall, the results for China suggests that the model can produce reasonably robust results 
without adequate observational data on rural and urban rates of natural increase. Although the 
results of our models for NM in the USA were reasonably good (given the constraints imposed 
by using UN data for all countries), it should be noted that an earlier model run that did not 
have the benefit of observed county-level data on RNIs, and which therefore relied entirely on 
imputed RNIs, did not produce very good results at the ecosystem level. Comparing the earlier 
modelled results with the Census Bureau estimates, the Pearson’s r was only 0.21 (not 
significant) for the 1990s and 0.17 (not significant) for the 2000s. This underscores the 
importance of observed RNIs to our results. We turn next to the uncertainties in the NM results, 

 

7 The data for the 1990s were obtained from http://www.census.gov/popest/archives/1990s/CO–99–04.html and 
the data for the 2000s were obtained from http://www.census.gov/popest/counties/. 

8 For more on migration data types, see Appendix D. 
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which stem largely from the imputation process that was used to estimate RNIs, and the steps 
that would need to be taken to reduce uncertainties. 

Uncertainties and next steps 

There are a number of uncertainties in our results that would take time and effort to resolve. 
We present here the biggest uncertainties, which relate to the imputation results, the 
relationship between population density and natural increase, and the census inputs. In each 
subsection we also examine the steps that would be required to improve results. 

Imputation results 
Probably the biggest uncertainties relate to the imputation methods used to impute rates of 
natural increase, which were part of our indirect estimation methodology. To recap, in order to 
obtain subnational variation in the estimates of NM, we subtracted subnational natural increase 
from the subnational change in population in each decade. The subnational natural increase, in 
turn, was obtained by multiplying rates of natural increase by the population at the beginning of 
the decade, with the rates varying subnationally as a function of population density. Ultimately, 
this method depended heavily on imputed urban and rural CBR and CDR, which were used to 
derive urban and rural RNIs. Although we had national level birth and death rates from the 
World Population Prospects 2008 at 5-year increments, the imputation procedures introduce 
uncertainty because for many countries we had either sparse or no observed urban/rural birth 
or death rates and thus had to impute much or all of the 40-year annual time series9. 

A good deal of the variance in the NM estimates across our model runs could be traced to 
variance in the imputed urban and rural RNIs. This generated high variance in slopes across 
the model runs, and the slopes were used to convert the urban densities to a grid of rates of 
natural increase. The high variance in rates of natural increase multiplied by population per grid 
cell tended to generate higher variance in regions with larger populations such as Asia, and 
lower variance in regions with sparse populations such as Oceania. We considered applying a 
Loess smoothing algorithm to the MI imputation results, much as it was applied to the Amelia 
results (see Appendix C). This would have substantially reduced the variance in the NM 
estimates around the mean. However, it would not necessarily have resulted in more accurate 
estimates of RNIs and ultimately NM. 

The issue of missing data has been a topic of substantial research interest. Missing values 
pose more than a nuisance to analysts. They increase scientific uncertainty, create additional 
challenges in the application of statistical analysis software and can call the representativeness 
of the results into doubt. The field of statistical imputation methods has therefore received 
continuous interest and has grown exponentially with the advent of cheap computing power 
and Bayesian methods. Seminal work was done in particular by Rubin (1987), Little et al. 
(2002), and Schafer (2002), but many others also contributed theory and software. MI has 
evolved into a more widely used technique to not only fill data gaps but to do so in a way that 
captures both the uncertainty in the data and in the imputation itself. 

 

9 In Appendix E we review the number of urban/rural birth and death rate inputs for the imputation process. The 
great number of inputs can be found in the former Soviet Union, whereas many other regions – including North 
America – had zero inputs. As discussed above, we ultimately used US Census Bureau data instead of imputed 
RNIs for the USA. 
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MI is also the approach used in this project, albeit implemented in two different ways as is 
explained elsewhere in the report. The basic approach of MI is to generate more than m (m>1 
but generally <10) completed datasets, analyse them separately and then combine the results 
using functions for the mean of the m individual estimates and the associated variance derived 
by Rubin (1987)10. 

An important assumption has to be made regarding the so-called missing data-generating 
mechanism, which is specified separately from the data-generating process in a likelihood-
based approach. Three different scenarios are possible. In the simplest but also most 
restrictive sense, the missing data are produced in a process that is completely independent 
from the data process. That is, one could essentially toss a coin to decide which data points to 
knock out. It is called missing completely at random (MCAR) and allows the analyst to ignore 
the missing data pattern. A valid but sometimes still inefficient way to deal with MCAR data is 
to remove incomplete observations through list-wise deletion. 

More often, the missing-data mechanism is in some way related to other observed data and is 
referred to as missing at random (MAR). A hypothetical example for MAR data is that data are 
missing because they have exceeded a threshold in another control variable, for example, 
study participants are excluded from a blood-pressure medication because they carry 
excessive weight. It turns out that the MAR situation is quite widely applicable and can be dealt 
with easily in the likelihood analysis context. Specifically, under MAR the probability that an 
observation is missing may depend on the observed values but not the missing values. In 
addition, it is assumed that the parameters of the data model and the parameters of the 
missing data indicators are distinct, which means the missing-data mechanism is said to be 
ignorable and inference can rely on the observed data alone. Lastly, in the adverse event that 
the data are missing because of their unobserved value, the analyst is faced with a missing not 
at random (MNAR) problem, and missing and observed data models do not separate out 
nicely, and an explicit missing data model has to be specified and included in the likelihood 
function for the observed data model. Since this often requires tailor-made solutions, the 
MNAR case is not as widespread as the MAR assumption. 

The two MI approaches used in this study rely on the MAR assumption but differ in their 
implementation of the data model as is described in Appendix C. The decision on what 
procedure or model to use (different software packages such as R MI and SAS PROC MI come 
with different solutions) and should be evaluated with respect to their performance for the given 
data. Diagnostic tools are available these days and validation studies can also be performed 
by, for example, removing observed values, imputing them and comparing the imputed data 
with the observed value that was removed. It is noted, though, that MI is often not concerned 
with imputing the most accurate value but with maintaining the distributional characteristics of 
the data, for example the mean and variance–covariance structure. 

The objective in this project was to fill the considerable gaps in crude birth and death rates for 
urban and rural areas. Missingness was approximately 96.8% in this panel dataset. An MI 
approach tailored to this problem must therefore take the following into account: 

 

10 m is the number of imputations. This is different from n, which refers to the sample size (e.g. a dataset of 
n=10,000 observations which may have some missing items, to complete them multiple imputation is used to 
create, for example, m=5 completed data sets). 
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• high fraction of missingness (but not necessarily missing information); 

• some countries without any observed values; 

• substantial autocorrelation due to the time series nature of the data and the fact that change 
in CBR and CDR manifests relatively slowly; 

• probable spatial correlation since neighbouring countries and regions often share similarities; 

• lack of complete covariates to draw from; and 

• correlation between the panel series that are to be imputed, that is between the urban and 
rural CBRs and CDRs. 

The two approaches applied have different strengths regarding these challenges. The MI 
procedure harnesses the power of all available covariates, spatial relatedness and the existing 
relationships between the urban and rural CBRs and CDRs within a country. The Amelia 
procedure on the other hand exploits the time series nature of the data, cross-country 
association, as well as the explanatory power of covariates (albeit in a different way). Amelia 
does not take the relatedness of the CBRs and CDRs into account. 

Future work would seek to address deficiencies in the respective imputation models through a 
variety of measures, some of which are generic to both models and some of which are model 
specific, and which fall into two categories: improvements to the model inputs and to the model 
specification. Assuming as we did an MAR missing data-generating mechanism, one possibility 
is to work on assembling better or more complete covariates, which have known and 
empirically demonstrated associations with the imputation variables. They should if possible be 
available at the same geographical–political resolution, that is the urban and rural dichotomy of 
the CBRs and CDRs, but at least the MI procedure can also extract some value from country-
level data. 

The Amelia imputations were mainly limited by computational power and therefore could not 
use all available covariate information. In addition, incomplete covariates are also imputed, 
which necessitates finding a good balance between explanatory variables and the need to also 
fill their gaps using the imputation variables and other covariates (which essentially creates a 
circular problem). Running Amelia on powerful computers in parallel processes could save time 
and allow expansion of the model. 

Countries without any information will remain a particular challenge. However, if only the 
imputation variables are missing but some data on covariates are available, the models will 
treat them more like other countries with similar covariate information. This could be examined 
further to see if these similarities are indeed meaningful, especially for ‘unique’ countries such 
as China and India but also for small island states and others. 

Model specification is another aspect that can be tested more systematically. The currently 
used models were built primarily on the basis of conversations with experts such as 
demographers, using simple linear, bivariate correlation analysis and exploratory graphs and 
scatterplots. Functional analysis of the relationships between variables to be imputed and 
covariates, as well as their interactions, could be further investigated and used to improve 
model specification. 
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A model specification issue specific to the MI package used in this analysis is that it does not 
currently take into account the temporal structure of the data. In other words, the MI package 
models and imputes a missing value for country, I, and time, t, as if it were conditionally 
independent of time (t – 1), time (t + 1), and all the other time periods. As a result, the 
estimated error variance is likely to be too small and the imputed values are unlikely to be 
consistent with the dominant trends in the observed data. For example, in most countries birth 
rates and death rates tend to decline over time. 

When modelling (complete) time-series cross-section data, a popular specification is to model 
the response as a function of a country-specific intercept, the lag of the dependent variable, the 
current values of the explanatory variables and the lag of the explanatory variables. Additional 
lags can be included if necessary but often are not necessary when the data are measured 
annually. It would be sensible and not terribly difficult for the MI package to use this 
specification when iteratively modelling and imputing time-series cross-section data with 
missing values. 

There are two substantive hurdles that have not been fully overcome yet, mostly because time-
series cross-section data are not a top priority for MI development. The first, as mentioned 
before, is that for many countries, there are no observed data on birth and/or death rates at the 
urban and rural levels. In that situation, a country-specific intercept is at best weakly identified 
by the data, and we would be forced to use the cross-sectional variation in the data to impute 
the missing values. The approach used in this analysis is to treat the country intercepts as 
random draws from a normal distribution and to estimate the unknown variance. 

The second hurdle is that if the specification were to include the lag of the dependent variable 
and/or explanatory variables, then it becomes necessary to impute the value(s) 1 year before 
the first observed value. For example, since our dataset starts in 1970, in order to model an 
outcome as a function of variables in 1969, we need to impute the relevant values for 1969. 
The usual procedure in the MI package of modelling and imputing the 1969 data does not 
exactly work, because in order to model the 1969 data, we would need the 1968 data and so 
on. 

If these two hurdles could be overcome and sufficient time were available, then it would be 
possible to impute missing values with the MI package in a time-series cross-section context in 
a way that took the dynamic nature of the data into account and allowed for cross-country 
heterogeneity. The Amelia package already includes some options that are geared toward 
time-series cross-section data, but in this case (and others) Amelia did not produce very 
smooth series, which forced us to smooth them further with the Loess procedure, as discussed 
in Appendix C. 

It can be concluded that there are still possibilities and opportunities to learn more about the 
nature of the missing data and to identify ways to use the available information more effectively 
through improvements in model specification. 

Relationship between density and rate of natural increase 

Although we hypothesise that there is a systematic relationship between the rates of natural 
increase and population density, the empirical evidence suggests a much more varied 
relationship. For example, without binning of the density levels, as was done for Figure 2, a 
simple scatter plot between district-level population density and RNIs in China suggests a more 
varied relationship (Figure 4). While most densely settled urban areas do indeed have 
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consistently low RNIs, the rural areas represent a much more varied picture, which may be due 
to the effects of the one-child policy. 

Figure 4: Scatter plot of RNIs (1989) against population density (1990) for China. 

 

Thus, for developing countries, while it may be true that on average the densest urban areas 
have lower RNIs than other areas, the relationship between density and RNI for other areas is 
more complex and undoubtedly has to do with proximity to areas of economic activity and 
higher development levels. The relationship in developed countries is even more complex. 
Nevertheless, we feel justified in applying this simplifying assumption because the alternative, 
assuming uniform natural increase in all areas of a country, seems worse. Yet, further research 
into the nature of the relationship between density and RNIs would improve the specification of 
the spatial modelling portion of this work. 

The census inputs 

There are several ways in which the census data inputs utilised in this project vary with respect 
to precision and accuracy, and some of these can be specified quantitatively. In Appendix E we 
review the sources of variation and present some high-level indicators related to the size of the 
census input units used in the gridded population products and frequency of censuses. The 
mean size of the census input units that underlie the population grids vary significantly by 
region and by ecosystem. Smaller sized units are generally most desirable, yet the size in 
square kilometres ranges from a ~100 km2 in Oceania to 60,000 km2 in Northern Africa and 
Australia, and for ecosystems the census inputs vary from a few 1,000 km2 in cultivated 
ecosystems to more than 60,000 km2 in high mountain and inland water ecosystems. There is 
little that we are able to do to redress these deficiencies other than to note that the number 
census inputs per country has tended to increase over time, which results in more accurate 
spatial allocation of populations. 

A significant concern is the lack of observed data for population distribution in 2010. Because 
of the lag between completion of censuses and publication of results, and when one adds the 
time required to compile and grid census results, we were unable to use census data to map 
the 2010 population distribution. In other words, the 2010 population distribution and the 2000–
10 population growth was largely an extrapolation of 1990–2000 subnational trends, but 
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adjusted at the country level to the World Population Prospects 2008 country-level estimates. 
This implies that the 2000–10 NM estimates have a good deal more uncertainty than the other 
estimates. The only real solution to this problem is to wait for 2010 round census results, which 
are beginning to be published. 

References 
Abayomi, K., Gelman, A., and Levy, M. (2008). Diagnostics for multivariate imputations. 
Journal of the Royal Statistical Society, Series C Applied Statistics 57(Part3): 273–291. 

Adamo S., and de Sherbinin, A. (forthcoming 2011). The impact of climate change on the 
spatial distribution of populations and migration. In: United Nations (ed), Proceedings of the 
Expert Group Meeting on Population Distribution, Urbanization, Internal Migration and 
Development. New York, Population Division: UNDESA. 

ADB (Asian Development Bank). (2011). Background Paper for Policy Dialogues on Climate-
induced Migration in Asia and the Pacific. Geneva, Switzerland: ADB. 

Adger, W., Agrawala, S., and M.M.Q. Mirza, M.M.Q. (2007). Assessment of adaptation, 
practices, options, constraints and capacity. In: M. Parry (ed.), Climate Change 2007: Impacts, 
Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge: IPCC/Cambridge 
University Press. 

Agardy, T.,and Alder, J. (2005). Coastal Systems. In Millennium Ecosystem Assessment. 
Washington, DC: Island Press. 

Aide, M., and Grau, H.R. (2004). Globalization, migration, and Latin American ecosystems. 
Science 305(5692): 1915–1916. 

André, M-F. (1998). Depopulation, Land-Use Change and Landscape Transformation in the 
French Massif Central. Ambio 27(4): 351–353. 

Balk, D., Pozzi, F., Yetman, G., Deichmann, U., and Nelson, A. (2004). The Distribution of 
People and the Dimension of Place: Methodologies to Improve the Global Estimation of Urban 
Extents. Available from: http://sedac.ciesin.columbia.edu/ gpw/docs/UR_paper_webdraft1.pdf. 

Balk, D., Yetman, G., and de Sherbinin, A. (2010). Construction of Gridded Population and 
Poverty Datasets from Different Data Sources Proceedings of European Forum for 
Geostatistics Conference. Tallinn, Estonia, 5–7 October. Available from: 
http://www.efgs.info/geostat-project/efgs-conference–2010-e-proceedings/e-
proceedings_EFGS_2010_Deliverable_WP4.pdf/view (accessed 28 February 2011). 

Balk, D., Montgomery, M., McGranahan, G., Kim, D., Mara, V., Todd, M., et al. (2009). 
Mapping urban settlements and the risks of climate change in Africa, Asia and South America. 
In: J.M. Guzmán, G. Martine, G. McGranahan, D. Schensul and C. Tacoli (eds), Population 
Dynamics and Climate Change. New York and London: UNFPA/IIED. 

Barbieri, A., Monte-Mor, R.L.M., and Bilsborrow, R. (2009). Towns in the jungle: exploring 
linkages between rural–urban mobility, urbanization and development in the Amazon. In: A. de 



MR4 31 

 

Sherbiniin, A. Rahman, A. Barbieri, J.C. Fotso, and Y. Zhu (eds), Urban Population–
Environment Dynamics in the Developing World: Case Studies and Lessons Learned. Paris: 
Committee for International Cooperation in National Research in Demography (CICRED). 

Barbieri, A., Domingues, E, Queiroz, B., Ruiz, R., Rigotti, J., Carvalho, J., et al. (2010). Climate 
change and population migration in Brazil’s Northeast: scenarios for 2025–2050. Population 
and Environment 31(5): 344–370. 

Bell, M., and Muhidin, S. (2009). Cross-national Comparisons of Internal Migration. Human 
Development Research Paper. New York: UNDP. 

Bell, M., Blake, M., Boyle, P., Duke-Williams, O., Rees, P., Stillwell, J. et al. (2002). Cross-
national comparison of internal migration: issues and measures. Journal of the Royal Statistical 
Society: Series A (Statistics in Society) 165(3): 435–464. 

Bilsborrow, R.E., Hugo, G., Oberai, A., and Zlotnik, H. (1997). International Migration Statistics: 
Guidelines for Improving Data Collection Systems. Geneva: International Labour Office. 

Black, R., and Skeldon, R. (2009). ‘Strengthening data and research tools on migration and 
development.’ International Migration 47(5): 3–22. 

Bright, E.A. personal communication, January 2011. 

Brown, O. (2007). “Eating the dry season" Labour mobility as a coping strategy for climate 
change. IISD Commentary. 

Campbell, K.M., Gulledge, J., McNeill, J.R., et al. (2007). The Age of Consequences: The 
Foreign Policy and National Security Implications of Global Climate Change. Washington, DC: 
Center for Strategic and International Studies and Center for New American Security. 

Carr, D. (2009). Rural migration: The driving force behind tropical deforestation on the 
settlement frontier. Progress in Human Geography 33(3): 355–378. 

Center for International Earth Science Information Network (CIESIN), Columbia University; 
International Food Policy Research Institute (IFPRI); The World Bank; and Centro Internacional 
de Agricultura Tropical (CIAT). (2011). Global Rural–Urban Mapping Project (GRUMP), 
Version 1: Population Counts. Palisades, NY: Socioeconomic Data and Applications Center 
(SEDAC), Columbia University. Available from: http://sedac.ciesin.columbia.edu/gpw. 

China in Time and Space (CITAS), University of California-Davis; China in Time and Space 
(CITAS), University of Washington; Center for International Earth Science Information Network 
(CIESIN). (1997). China Dimensions Data Collection: China County-Level Data on Population 
(Census) and Agriculture, Keyed to 1:1M GIS Map. Saginaw, MI: CIESIN. Available from: 
http://sedac.ciesin.columbia.edu/china/. 

Conelly, W.T. (1992). Agricultural intensification in a Philippine frontier community: impact on 
labour efficiency and farm diversity. Human Ecology 20(2): 203–223. 

Corvalan, C., Hales, S. and McMichael, A. (2005). Ecosystems and Human Well-being: Health 
Synthesis. A Report of the Millennium Ecosystem Assessment. Geneva: World Health 
Organization. 



MR4 32 

 

Craviotti, C., and Soverna, S. (1999). Sistematización de Casos de Pobreza rural. Buenos 
Aires: PROINDER. 

Curran, S. (2002). Migration, Social Capital, and the Environment: Considering Migrant 
Selectivity and Networks in Relation to Coastal Ecosystems. Population and Development 
Review 28(Suppl.): 89 –125. 

DeFries, R., and Pagiola, S. (2005). Analytical approaches for assessing ecosystem condition 
and human well-being. In: R. Hassan, R. Scholes, and N. Ash (eds), Ecosystems and Human 
Well-being : Current State and Trends: Findings of the Condition and Trends Working Group. 
Washington, DC: Island Press, Chapter 2.  

Dempster, A.P., Laird,  N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete 
data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 
39(1): 1–38. 

de Sherbinin, A., VanWey, L., McSweeney, K., et al. (2007a). Household demographics, 
livelihoods and the environment. Global Environmental Change 18: 38–53. 

de Sherbinin, A., Schiller, A., and Pulsipher, A. (2007b). The vulnerability of global cities to 
climate hazards. Environment & Urbanization 19: 39–64. 

Durand, J. D. (1977). Historical Estimates of World Population. Population and Developmental 
Review 3(3): 253–296. 

Environmental Change and Forced Migration Scenarios (EACH-FOR). (2009). Project 
Synthesis. Available from: http://www.each-for.eu/documents/EACH-
FOR_Synthesis_Report_090515.pdf. 

Feng, S., Krueger, A. and Oppenheimer, M. (2010). Linkages among climate change, crop 
yields and Mexico–US cross-border migration. Proceedings of the National Academy of 
Sciences of the United States of America 107(32): 14257–14262. 

Geist, H., and Lambin, E. (2002). Proximate causes and underlying driving forces of tropical 
deforestation. Bioscience 52: 143–150  

Geist, H. and Lambin, E. (2004). Dynamic Causal Patterns of Desertification. BioScience 54(9): 
817–829.  

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis, 2nd 
edition. Boca Raton, FL: Chapman & Hall/CRC. 

Gelman, A., Van Mechelen, I., Verbeke, G., Heitjan, D.F., and Meulders, M. (2005). Multiple 
imputation for model checking: Completed-data plots with missing and latent data. Biometrics 
61: 74–85. 

Gelman, A., King, C., Liu, C. (1998). Not asked and not answered: Multiple imputation for 
multiple surveys. Journal of the American Statistical Association 93: 846–857. 

Gerland, P. personal communication, 11 March 2011. 



MR4 33 

 

Gonzalez, R., Otero, A., Nakayama, L., and Marioni, S. (2009). Tourism mobilities and amenity 
migration: problems and contradictions in the development of mountain resorts. Revista de 
Geografía Norte Grande 44: 75–92. 

Grau, H. R. and Aide, M. (2008). Globalization and land-use transitions in Latin America. 
Ecology and Society 13(2): 16. 

Grigg, D. (1987). The industrial revolution and land transformation. In: M.G. Wolman, and 
F.G.A. Fournier (eds), Land Transformation in Agriculture. Chichester, New York: SCOPE 32, 
John Wiley & Sons. 

Hamilton, L. and Butler, M. (2001). Outport Adaptations: Social Indicators through 
Newfoundland's Cod Crisis. Human Ecology Review 8(2):1-11.  

Hassan, R., Scholes, R., and Ash, N. (2005). Ecosystems and Human Well-being: Current 
State and Trends: Findings of the Condition and Trends Working Group. Washington, DC: 
Island Press. Available from: http://www.maweb.org/documents/document.765.aspx.pdf 
(Accessed 24 March 2011). 

Henry, S., Schoumaker, B., and Beauchemin, C. (2004). The impact of rainfall on the first 
outmigration: A multi-level event-history analysis in Burkina Faso. Population and Environment 
25: 423–460. 

Hidalgo, R., Borsdorf, A., and Plaza, F. (2009). Pleasure lots near Santiago de Chile and 
Valparaiso. Amenity migration the Chilean way? Revista de Geografía Norte Grande 44: 93–
112.  

Honaker, G.K., and Blackwell, M. (2011). AMELIA II: A Program for Missing Data. Version 1.5-
4. Available from: http://cran.r-project.org/web/packages/Amelia/vignettes/amelia.pdf. 

Hugo, G. (1996). Environmental concerns and international migration. International Migration 
Review 30: 105–131. 

IIED (International Institute for Environmental Development). (2008). Climate change and 
drylands. Stockholm, Commission on Climate Change and Development. 
http://www.ccdcommission.org/Filer/pdf/pb_climate_change_drylands.pdf. 

Kasfir, N. (1993). Agricultural transformation in the Robusta coffee/banana zone of Bushenyi, 
Uganda. In: B.L. Turner II, G. Hyden, and R. Kates (eds), Population Growth and Agricultural 
Change in Africa. Gainesville: University Press of Florida, pp. 41–79. 

Keys, E., and McConnell, W. (2005). Global change and the intensification of agriculture in 
thetropics. Global Environmental Change 15: 320–337. 

King, G., Honaker, J.,  Joseph, A. and  Scheve, K. (2001). Analyzing Incomplete Political 
Science Data: An Alternative Algorithm for Multiple Imputation. American Political Science 
Review 95(1):49-69.   

Klein Goldewijk, K. (2001). Estimating global land use change over the past 300 years: the 
HYDE database. Global Biogeochemical Cycles 15(2): 417–433. 

http://www.ccdcommission.org/Filer/pdf/pb_climate_change_drylands.pdf


MR4 34 

 

Klein Goldewijk, K. (2005). Three centuries of global population growth: A spatial referenced 
population density database for 1700–2000. Population and Environment 26: 343–367. 

Klein Goldewijk, K., and Van Drecht, G. (2006). HYDE 3: current and historical population and 
land cover. In: A.F. Bouwman, T. Kram, and K. Klein Goldewijk (eds), Integrated modelling of 
global environmental change. An overview of IMAGE 2.4. Bilthoven, The Netherlands: 
Netherlands Environmental Assessment Agency, pp. 93–111. 

Klein Goldewijk, K., and Battjes, J.J. (1997). A hundred year (1890–1990) database for 
integrated environmental assessment (HY DE, version1 .1). Rep.4 22514002. Bilthoven, The 
Netherlands: National Institute of Public Health and the Environment (R IVM). 

Klein Goldewijk, K., de Man, R., Meijer, J., and Wonink, S. (2004). The Environmental 
Assessment Agency. 2004 World Regions and Subregions. The Hague, National Institute for 
Public Health and the Environment (RIVM), KMD Memo M001/04. 

Klein Goldewijk, K., Beusen, A., and Janssen, P. (2010). Long term dynamic modelling of 
global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene 20: 
565–573. 

Klein Goldewijk, K., Beusen, A., de Vos, M. and van Drecht, G. (2011). The HYDE 3.1 spatially 
explicit database of human induced land use change over the past 12,000 years, Global 
Ecology and Biogeography 20(1): 73-86.  

Körner, C., and Ohsawa, M. (2005). Mountain System. Ecosystems and Human Well Being, 
Current States and Trends. Millennium Ecosystem Assessment. Washington, DC: Island 
Press. 

Lahmeyer, J. (2004). Populstat database. Growth of the population per country in a historical 
perspective, including their administrative divisions and principal town. Available from: 
http://www.library.uu.nl/wesp/populstat/populhome.html. 

Levy, M., Babu, S. and Hamilton, K.. (2005). Ecosystem conditions and human well being. In 
Millennium Ecosystem Assessment. Washington, DC: Island Press ORNL. (2006). Landscan 
global population database, the 2004 revision. Oak Ridge, TN, Oak Ridge National Laboratory. 
Available from: http://www.ornl.gov/landscan. 

Little, R.J.A., and Rubin, D.B. (2002). Statistical Analysis with Missing Data, 2nd edition. New 
York: JOhn Wiley & Sons. 

Livi-Bacci, M. (2007). A Concise History of World Population, 4th edition. Oxford: Blackwell 
Publishing. 

McEvedy, C., and Jones, R. (1978). World Atlas of Population History. Harmondsworth: 
Penguin Books Ltd. 

Maddison, A. (1995). Monitoring the World Economy. Paris: OECD Development Centre, pp. 
1820–1992.Maddison, A. (2001). The World Economy: A Millennial Perspective. Paris: OECD 

Magdalena, F. V. (1996). Population Growth and the Changing Ecosystem in Mindanao. 
Sojourn 11(1): 105–127. 

http://www.library.uu.nl/wesp/populstat/populhome.html


MR4 35 

 

Massey, D. (1990a). Social structure, household strategies, and the cumulative causation of 
migration. Population Index 56(1): 3–26. 

Massey, D. (1990b). The social and economic origins of immigration. Annals of the American 
Academy of Political and Social Science 510: 60–72. 

McGranahan, G., Balk, D. and Anderson, B. (2007). The rising tide: assessing the risks of 
climate change and human settlements in low elevation coastal zones. Environment and 
Urbanization 19(1): 17–37. 

Meyerson, F., Merino, L., and Durand, J. (2007). Migration and environment in the context of 
globalization. Frontiers of Ecology and Environment 5: 182–190. 

Mitchell, B.R. (1993). International Historical Statistics, The Americas: 1750–1988. 
Indianapolis, IN: Macmillan, p. 817. 

Mitchell, B.R. (1998a). International historical statistics, Europe: 1750–1993, 4th edition. 
Indianapolis, IN: Macmillan, p. 959. 

Mitchell, B.R. (1998b). International Historical Statistics, Africa, Asia & Oceania: 1750–1993, 
(3rd edn). Indianapolis, IN: Macmillan, p. 1113. 

Mitchell, B. R. (1975). European Historical Statistics 1750-1975. London, Macmillan. 

Mitchell, B. R. (1982). International Historical Statistics: Asia and Africa. London, 
Macmillan/IMF, International Financial Statistics (IFS). 

Mitchell, B. R. (1983). International Historical Statistics: Americas and Australasia. London: 
Macmillan 

Montgomery, M. (2008). The urban transformation of the Developing World. Science 319: 761–
764. 

OSCE. Economic and Environmental Activities. (2005). Background paper for Session III of the 
13th Economic Forum.. Vienna, OSCE, The Secretariat. Available from: 
http://www.osce.org/eea/14861. 

Parsons, C.R., Skeldon, R., Walmsley, T.L., and Winters, L.A. (2007). Quantifying International 
Migration: A Database of Bilateral Migrant Stocks. Policy Research Working Paper. World 
Bank. 

Portes, A. (1997). Immigration theory for a new century: some problems and opportunities. 
International Migration Review 31(4): 799–825. 

Rain, D. (1999). Eaters of the Dry Season: Circular Labour Migration in the West African Sahel. 
Boulder, CO: Westview Press. 

Riebsame, W. E., Gosnell, H and Theobald, D. M. (1996). Land use and landscape change in 
the Colorado Mountains .1. Theory, scale, and pattern. Mountain Research and Development 
16(4):395-405. 



MR4 36 

 

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & 
Sons, Inc. 

Safriel, U. and Adeel, Z. (2005). Dryland systems. Millennium Ecosystem Assessment. 
Washington, DC: Island Press. 

Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall. 

Schelhas, J. (1996). Land use choice and change: intensification and diversification in the 
lowland tropics of Costa Rica. Human Organization 55(3): 298–306. 

Scott, L. (2006). Chronic Poverty and the Environment: A Vulnerability Perspective. Chronic 
Poverty Research Centre Working Paper No. 62. London, UK: Overseas Development 
Institute. 

Shumway, J., and Otterstrom, S. (2001). Spatial patterns of migration and income change in 
the Mountain West: the dominance of service-based, amenity-rich counties. The Professional 
Geographer 53: 492–502. 

Solomon, A. (1994). Report from the IMAGE 2 advisory board meeting in Amsterdam, 20–22 
June. NRP Report no. 00–13. Bilthoven, The Netherlands: Natural Resources Programme on 
Global Air Pollutution and Climate Change. 

Tobler, W., Deichmann, U., Gottsegen, J., and Maloy, K. (1995). The global demography 
project. Tech. Rep. TR–95–6. Santa Barbara, California: National Center for Geographic 
Information and Analysis (NCGIA). 

United Nations, Department of Economic and Social Affairs, Population Division. (1997). World 
Population Prospects: The 1996 Revision. New York: United Nations. 

United Nations, Department of Economic and Social Affairs, Population Division. (2009). World 
Population Prospects: The 2008 Revision. New York: United Nations. 

United Nations, Department of Economic and Social Affairs, Population Division. (2010). World 
Urbanization Prospects: The 2009 Revision. New York: United Nations. 

United Nations Population Division. (2010). International Migration Stock: The 2009 Revision. 
New York: United Nations. 

United Nations Statistics Division. (1978–2008). Demographic Yearbook (multiple edn). New 
York: United Nations. Available from: 
http://unstats.un.org/unsd/demographic/products/dyb/dyb2.htm. 

Uriarte, M., Schneider, L. and Rudel, T. K. (2010). Synthesis: land transitions in the tropics. 
Biotropica 42(1):59-62. 

Valdivia, C., Seth, A., J. L. Gilles, M., et al. (2010). Adapting to climate change in Andean 
ecosystems: landscapes, capitals, and perceptions shaping rural livelihood strategies and 
linking knowledge systems. Annals of the Association of American Geographers 100(4): 818–
834. 



MR4 37 

 

Warner, K., Enrhart, C., de Sherbinin, A., Adamo, S., and Chai-Onn, T. (2009). In Search of 
Shelter: Mapping the Effects of Climate Change on Human Migration and Displacement. A 
policy paper prepared for the 2009 Climate Negotiations. Bonn, United Nations University, 
CARE, and CIESIN-Columbia University. 

WBGU (German Advisory Council on Global Change) (2007). Climate Change as Security 
Risk. Berlin: WBGU. 

Wheeler, D. (2011). Quantifying Vulnerability to Climate Change: Implications for Adaptation 
Assistance. Washington, DC. Center for Global Development. 
http://www.cgdev.org/content/publications/detail/1424759   

White, M., and Linstrom, D. (2005). Internal migration. In: D. Poston, and M. Micklin (eds), 
Handbook of Population. New York: Springer. 

World Gazetteer (2004). Current population figures for cities, towns and administrative 
divisions of all countries largest cities of the world. The World Gazetteer. Available from: 
http://www.world-gazetteer.com/home.htm (accessed June 2004). 

Xu, J., Sharma, R., Gang, J. and Xu, Y. (2008). Critical linkages between land-use transition 
and human health in the Himalayan region. Environment International 34: 239–247. 

http://www.cgdev.org/content/publications/detail/1424759
http://www.world-gazetteer.com/home.htm


MR4 38 

 

Appendix A: Tables and figures 
Table A1: Millennium Ecosystem Assessment systems and subsystems. 

Cultivation 

Value Description AG_SHARE 

1 Cropland – 

2 Pasture – 

3 Cropland/pasture – 

4 Agriculture with forest 60–80% ag 

5 Agriculture with other vegetation 60–80% ag 

6 Agriculture/forest mosaic Approx. 50% ag 

7 Agriculture/other mosaic Approx. 50% ag 

8 Forest with agriculture 20–40% ag 

9 Other vegetation with agriculture 20–40% ag 

10 Agriculture/two other land cover types Approx. 30% ag 

 

Dry 

Value Description 

2 Dry subhumid 

3 Semiarid 

4 Arid 

5 Hyperarid 
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Forested 

Value Description 

1 Tree cover, broadleaved, evergreen 

2 Tree cover, broadleaved, deciduous, closed 

3 Tree cover, broadleaved, deciduous, open 

4 Tree cover, needle-leaved, evergreen 

5 Tree cover, needle-leaved, deciduous 

6 Tree cover, mixed leaf type 

7 Tree cover, regularly flooded, fresh 

8 Tree cover, regularly flooded, saline (daily var) 

9 Mosaic: tree cover/other natural vegetation 

10 Tree cover, burnt 

 

Inland water 

Value Description 

1 Lake 

2 Reservoir 

3 River 

4 Freshwater marsh, floodplain 

5 Swamp forest, flooded forest 

6 Pan, brackish/saline wetland 

7 Bog, fen, mire 

8 Intermittent wetland/lake 
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Inland water 

Value Description 

9 50–1 00% wetland 
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Inland water 

Value Description 

Island 

Value Description 

1 Continental state island/inhabited/≤2 km 

2 Continental state island/inhabited/>2 km 

3 Continental state island/uninhabited/≤2 km 

4 Continental state island/uninhabited/>2 km 

5 Island state/inhabited/≤2 km 

6 Island state/inhabited/>2 km 

7 Island state/uninhabited/>2 km 

1 Continental state island/inhabited/≤2 km 

2 Continental state island/inhabited/>2 km 

3 Continental state island/uninhabited/≤2 km 

 

Mountain 

Value Description 

1 Humid tropical hill 

2 Humid tropical lower montane 

3 Humid tropical upper montane 

4 Humid temperate hill and lower montane 

5 Humid temperate lower/mid montane 

6 Humid temperate upper montane and pan-mixed 

7 Humid temperate alpine/nival 



MR4 42 

 

Mountain 

Value Description 

8 Humid tropical alpine/nival 

9 Dry tropical hill 

10 Dry subtropical hill 

11 Dry warm temperate lower montane 

12 Dry cool temperate montane 

13 Dry boreal/subalpine 

14 Dry subpolar/alpine 

15 Polar/nival 

 

Polar 

Value Description Short description 

1 Ice Ice 

2 Barrens and prostrate dwarf shrub tundra 
(includes rock/lichens, and prostrate tundra) 

Barrens and prostrate dwarf 
shrub tundra 

3 Graminoid, dwarf-shrub, and moss tundras Graminoid, dwarf-shrub, 
and moss tundras 

4 Forest tundra (including low shrub tundra) Forest tundra 

5 Ice (Antarctica) Ice (Antarctica) 

 

Coastal 

Value Description 

1 Coastal 

Source: Millennium Ecosystem Assessment. 
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Table A2: Grid cell resolutions in relation to distance on a side and area. 

East–west arcs Distance on a side at equator Area at equator 

1 degree 111.32 km 12,392.14 km2 

5 minute (0.083o)  9.3 km 86.49 km2 

2.5 minute (0.042o)  4.65 km 21.62 km2 

30 arc-sec (0.0083o)  0.93 km (~1 km) 0.87 km2 

1 degree 78.85 km 6,217.32 km2 

2.5 minute 3.275 km 10.73 km2 

 

Table A3: Summary information on input units for gridded population of the World v3, by 
continent. 

Continent Modal level* Total number of units Average resolution Average pers

Africa 2 109,138 73 166 

Asia 2 88,782 53 276 

Europe 2 91,086 25 112 

North America 2 74,421 29 83 

Oceania 1 2,153 25 27 

South America 2 10,919 68 49 

Global 2 376,499 46 144 

Source: Balk et al. (2010). 
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Map A1: Estimated net migration 1970s. 
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Map A2: Estimated net migration 1980s. 
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Map A3: Estimated net migration 1990s. 
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Map A4: Estimated net migration 2000s*. 

 
*Note: These estimates must be treated with particular caution because they are not based on observed population distributions in 2010. See the text for details. 
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Table A5: Net migration for all ecosystems. 

All ecosystems  

1970  1980  1990  2000  

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global 0 0 0 0 0 0 0 0 

Africa –2,986,286 2,198 –2,766,992 1,195 –4,014,701 7,539 –5,420,791 5,679 

Northern Africa –1,638,324 503 –1,161,216 503 –2,596,270 2,511 –2,433,764 1,500 

Middle Africa –126,230 547 –133,215 247 –90,002 1,906 –33,992 1,228 

Western Africa –186,527 465 –1,169,938 469 –922,184 3,087 –1,387,243 1,317 

Eastern Africa –1,245,616 1,183 –315,295 509 –1,361,623 1,682 –2,872,478 2,679 

Southern Africa 210,411 190 12,672 275 955,378 1,221 1,306,685 1,005 

Europe 2,963,155 83,719 4,495,732 91,701 9,970,784 80,473 15,319,340 17,182 

Northern Europe –69,297 141,722 157,709 137,596 354,638 162,509 2,908,449 642 

Western Europe 2,616,636 495 3,273,176 1,019 5,206,092 2,033 4,065,874 1,323 

Eastern Europe –416,312 139,097 859,416 107,644 3,150,054 177,101 79,458 1,173 

Southern Europe 832,129 1,562 205,431 1,569 1,259,999 4,348 8,265,558 17,404 

North America 7,314,970 82,312 9,842,519 92,298 15,170,834 82,094 12,859,641 917 

Northern America 7,314,970 82,312 9,842,519 92,298 15,170,834 82,094 12,859,641 917 

Latin America and the Caribbean –4,175,727 2,263 –7,845,732 1,573 –7,237,869 13,173 –10,989,066 4,571 

Central America –2,583,320 1,806 –5,324,188 919 –4,270,031 7,269 –6,782,638 2,499 
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All ecosystems  

1970  1980  1990  2000  

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean† –1,133,976 148 –1,361,950 88 –1,183,922 270 –1,199,597 1,045 

South America –458,431 1,155 –1,159,594 1,091 –1,783,915 8,945 –3,006,831 4,065 

Asia –3,658,356 5,786 –4,696,559 2,174 –14,768,469 19,718 –12,942,368 13,979 

Western Asia 1,273,059 519 1,175,888 307 –49,249 2,987 2,285,370 1,263 

South-central Asia –2,219,135 1,324 –4,526,475 1,389 –9,747,041 13,239 –8,937,475 6,275 

Eastern Asia –934,269 6,244 120,729 2,516 –1,283,993 23,997 –3,344,508 13,606 

South-East Asia –1,778,010 1,760 –1,466,701 940 –3,688,187 7,754 –2,945,755 4,914 

Oceania 542,243 49 971,031 65 879,422 532 1,173,245 69 

Australia and New Zealand 657,523 39 1,128,733 57 1,018,520 446 1,294,376 61 

Melanesia† –49,840 31 –89,918 17 –90,282 87 –66,431 37 

Micronesia† 0 0 0 0 0 0 0 0 

Polynesia† –65,440 2 –67,784 1 –48,817 6 –54,701 4 

China –1,359,034 488,636 –542,218 235,839 –1,272,109 327,752 –3,658,773 446,928 

USA 7,934,280 72,736 9,584,103 67,759 16,154,882 56,056 10,442,903 912 

†Excludes small islands with populations under 300,000. SD, standard deviation. 
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Table A6: Net migration for the coastal ecosystem*. 

Coastal 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global 30,504,221 15,199,543 27,143,283 14,652,931 72,984,160 23,338,767 82,094,081 33,472,770 

Africa 2,144,952 1,188,626 1,662,674 1,626,173 4,230,605 1,584,188 5,447,186 1,713,677 

Northern Africa –1,298,326 216,063 –1,437,626 913,368 –1,979,162 502,953 –1,772,625 632,095 

Middle Africa 161,623 190,072 488,602 279,402 1,079,794 180,475 626,745 280,445 

Western Africa 2,124,722 532,937 2,590,294 765,101 3,925,136 995,296 4,780,628 823,567 

Eastern Africa 1,121,316 391,820 –75,880 485,203 1,017,358 449,679 1,265,445 763,199 

Southern Africa 35,616 84,008 97,284 133,786 187,478 191,082 546,993 287,308 

Europe 2,877,503 765,567 3,435,037 787,846 3,630,706 1,000,721 6,289,301 1,516,045 

Northern Europe 328,269 159,706 774,972 278,258 609,382 271,281 2,247,105 621,693 

Western Europe 333,965 127,590 191,798 239,840 707,948 246,654 670,919 270,074 

Eastern Europe 297,067 234,109 374,463 101,587 –117,810 181,185 –220,443 126,831 

Southern Europe 1,918,203 746,173 2,093,805 900,096 2,431,186 819,761 3,591,719 1,022,454 

North America –149,265 111,789 2,061,153 100,181 404,874 131,374 –179,036 338,032 

Northern America –149,265 111,789 2,061,153 100,181 404,874 131,374 –179,036 338,032 

Latin America and the Caribbean 3,196,119 1,124,868 4,855,932 1,417,857 4,295,320 2,138,264 4,968,650 2,314,933 

Central America –240,794 923,973 –733,134 1,054,742 –1,265,953 985,642 –1,440,650 1,493,172 
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Coastal 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean† –513,645 124,569 –87,884 130,609 –240,061 87,942 –225,013 247,450 

South America 3,950,558 1,158,359 5,676,949 1,660,623 5,801,333 2,344,572 6,634,314 1,796,662 

Asia 22,003,638 13,718,904 14,276,143 12,151,137 59,571,112 21,452,381 64,825,722 31,007,417 

Western Asia 1,203,989 193,816 904,228 190,475 1,474,870 362,057 2,211,387 677,769 

South-central Asia 99,654 3,478,467 –1,779,532 3,830,310 16,932,248 8,069,249 30,165,585 13,226,772 

Eastern Asia 12,924,933 10,923,218 7,090,779 6,704,996 28,633,201 13,883,901 17,662,878 17,023,951 

South-eastern Asia 7,775,062 3,398,815 8,060,668 6,396,541 12,530,794 6,361,181 14,785,872 7,821,281 

Oceania 431,274 169,360 852,344 240,790 851,542 285,533 742,257 217,087 

Australia and New Zealand 463,151 172,085 893,831 239,336 864,867 274,584 721,493 205,745 

Melanesia† –20,523 6,426 –29,292 9,442 –5,143 12,587 27,851 18,814 

Micronesia† 0 0 0 0 0 0 0 0 

Polynesia† –11,353 1,093 –12,195 1,145 –8,182 1,270 –7,087 1,808 

China 11,834,456 9,800,265 4,625,581 6,514,140 26,351,021 13,637,352 15,219,039 16,505,812 

USA 1,443,290 1,001 3,115,996 1,354 2,941,103 1,788 –1,052,101 326 

*See Table A13 for net migration for small island states by decade. †Excludes small islands with populations under 300,000. SD, standard deviation. 
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Table A7: Net migration for mountain ecosystems*. 

Mountain 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global –23,384,687 12,410,812 –22,743,723 10,260,815 –36,900,825 13,599,185 –
43,247,703 

18,179,487 

Africa –2,795,249 954,332 –2,001,789 1,096,371 –4,293,636 1,426,037 –6,540,535 2,027,037 

Northern Africa –471,098 344,456 –1,033,836 377,266 –924,313 283,464 –1,419,950 469,966 

Middle Africa –10,549 265,368 201,365 222,547 –667,189 221,695 –324,319 525,892 

Western Africa –267,874 54,230 –257,945 72,841 –428,033 99,637 –597,482 94,981 

Eastern Africa –1,875,783 321,646 –428,575 451,500 –2,657,177 703,033 –3,303,646 718,348 

Southern Africa –169,945 267,588 –482,798 418,663 383,076 609,864 –895,138 817,175 

Europe –2,794,237 1,259,666 –3,185,719 1,941,847 –2,991,756 1,365,962 –1,813,462 1,621,850 

Northern Europe 144,371 101,791 252,308 59,398 141,569 90,206 –24,898 84,524 

Western Europe –648,100 246,390 –472,825 669,154 –201,737 422,398 –305,602 538,654 

Eastern Europe 311,112 100,255 279,404 86,567 740,879 103,049 174,034 129,699 

Southern Europe –2,601,619 1,124,330 –3,244,605 1,587,336 –3,672,468 1,213,977 –1,656,996 1,311,285 

North America 4,133,098 91,869 4,852,499 80,113 7,566,917 107,113 962,697 108,488 

Northern America 4,133,098 91,869 4,852,499 80,113 7,566,917 107,113 962,697 108,488 

Latin America and the Caribbean –2,896,616 1,779,519 –5,984,636 1,829,444 –7,291,786 1,565,120 –7,064,234 2,554,582 

Central America –1,029,205 1,692,381 –2,782,932 1,722,623 –3,670,955 1,440,054 –3,573,061 2,197,039 
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Mountain 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean† –131,459 84,524 –388,753 82,425 –252,132 48,891 –318,431 161,720 

South America –1,735,952 385,006 –2,812,951 526,356 –3,368,700 444,479 –3,172,742 834,735 

Asia –19,023,269 10,559,457 –16,349,197 7,125,313 –29,788,068 11,370,905 –
28,714,062 

13,790,577 

Western Asia –1,714,296 583,871 –2,217,557 357,824 –2,907,732 888,166 –1,623,636 1,307,681 

South-central Asia –1,089,525 1,395,605 –4,074,997 2,339,368 –1,792,684 1,831,478 –7,762,292 2,719,818 

Eastern Asia –12,670,688 9,195,309 –6,007,673 5,230,625 –20,187,170 9,809,740 –
12,538,653 

10,739,607 

South-eastern Asia –3,548,759 1,220,764 –4,048,970 2,041,638 –4,900,483 2,375,998 –6,789,481 2,634,012 

Oceania –8,414 33,294 –74,881 49,886 –102,495 69,033 –78,107 70,479 

Australia and New Zealand –18,327 33,773 –45,580 44,041 –37,357 48,767 26,730 34,530 

Melanesia† 9,913 7,335 –29,301 16,317 –65,138 23,675 –104,837 41,523 

Micronesia† 0 0 0 0 0 0 0 0 

Polynesia† – – – – – – – – 

China –11,973,460 8,670,885 –4,551,491 5,001,721 –19,052,948 9,717,077 –
11,199,708 

10,558,251 

USA 3,885,519 59,978 4,536,311 59,276 7,237,223 51,291 1,014,054 48 

*Includes only humid tropical upper montane, humid temperate upper montane and pan-mixed, humid temperate alpine/nival, humid tropical alpine/nival, dry cool 
temperate montane, dry boreal/subalpine, dry subpolar/alpine and polar/nival. Lower and lower/mid-montane and hill ecosystems were removed. †Excludes 
small islands with populations under 300,000. SD, standard deviation. 
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Table A8: Net migration for cultivated systems*. 

Cultivated 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global –12,751,417 6,176,736 –11,923,479 5,906,406 –34,396,406 9,772,862 –22,958,756 15,823,015 

Africa –1,495,729 544,253 –1,364,092 1,583,953 –3,912,595 801,574 –4,738,416 1,260,911 

Northern Africa –1,487,364 370,114 –2,786,520 1,444,876 –2,840,739 747,789 –2,605,911 1,185,644 

Middle Africa 530,628 447,912 783,028 318,763 240,420 282,248 559,533 452,681 

Western Africa –487,110 83,498 –646,698 94,227 –560,978 151,634 –1,338,239 172,035 

Eastern Africa –283,754 165,439 1,214,065 151,227 –840,802 203,642 –1,899,180 329,058 

Southern Africa 231,869 37,233 72,033 60,559 89,505 88,918 545,380 148,668 

Europe 603,220 883,708 835,855 1,081,603 7,183,384 579,928 10,867,666 825,366 

Northern Europe –280,159 160,292 –540,222 179,851 178,532 191,455 2,006,647 82,674 

Western Europe 2,145,282 474,923 2,480,518 604,593 4,418,001 402,250 3,762,325 350,940 

Eastern Europe –1,036,850 389,510 –121,131 313,548 3,162,103 415,027 358,010 272,734 

Southern Europe –225,053 550,899 –983,311 559,626 –575,252 546,071 4,740,684 756,552 

North America 4,202,477 157,225 3,859,522 135,915 10,410,234 187,103 11,430,717 209,341 

Northern America 4,202,477 157,225 3,859,522 135,915 10,410,234 187,103 11,430,717 209,341 

Latin America and the Caribbean –6,292,604 2,312,168 –9,404,610 3,625,004 –11,004,362 3,687,631 –11,362,221 2,890,131 

Central America –1,066,197 1,593,729 –2,428,767 1,637,693 –3,111,637 1,645,960 –2,953,331 2,303,728 
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Cultivated 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean† –341,871 82,674 –430,255 80,891 –472,265 78,410 –455,784 97,539 

South America –4,884,536 906,502 –6,545,589 2,192,734 –7,420,460 2,615,799 –7,953,106 2,018,541 

Asia –9,791,249 5,762,592 –5,897,132 3,966,188 –37,171,530 9,536,413 –29,334,870 15,215,344 

Western Asia –2,898 235,231 –1,056,750 175,988 281,695 389,717 539,628 562,301 

South-central Asia –1,585,972 1,826,882 –636,154 2,051,250 –16,570,948 3,356,938 –15,805,450 6,615,303 

Eastern Asia –7,266,576 5,097,331 –4,330,315 4,139,991 –16,716,271 8,650,442 –12,723,684 11,782,858 

South-eastern Asia –935,803 936,691 126,087 850,705 –4,166,006 1,449,555 –1,345,363 2,027,190 

Oceania 22,468 78,139 46,979 95,792 98,463 98,028 178,369 90,430 

Australia and New Zealand –3,596 78,092 41,851 95,686 105,524 96,965 181,560 87,541 

Melanesia† 26,064 1,233 5,128 592 –7,061 1,683 –3,191 4,090 

Micronesia† 0 0 0 0 0 0 0 0 

Polynesia† – – – – – – – – 

China –7,779,642 4,813,717 –5,164,043 4,108,277 –17,230,841 8,604,270 –13,104,767 11,694,991 

USA 3,784,349 458 3,331,267 254 9,865,971 1,682 10,488,022 522 

*Includes all but Pasture. †Excludes small islands with populations under 300,000. SD, standard deviation. 
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Table A9: Net migration for forest ecosystems. 

Forest 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global –19,276,493 10,048,550 –21,256,821 9,344,751 –25,446,233 11,737,066 –39,646,045 15,621,282 

Africa –3,547,684 1,688,931 –6,265,233 1,884,644 –6,725,177 2,052,899 –9,165,396 3,741,378 

Northern Africa –53,879 61,687 –455,273 65,416 –208,071 69,621 –309,044 135,640 

Middle Africa –1,313,662 1,142,480 –2,533,891 1,120,757 –3,662,361 1,111,051 –3,603,083 2,377,162 

Western Africa –690,189 112,900 –845,474 152,610 –1,429,178 255,639 –1,626,148 245,208 

Eastern Africa –1,180,794 413,758 –1,851,349 632,397 –1,450,680 602,758 –2,734,268 723,459 

Southern Africa –309,159 234,201 –579,246 369,409 25,114 515,083 –892,853 708,743 

Europe –1,973,588 993,135 –1,530,933 1,798,733 –902,946 1,213,569 –457,463 1,689,265 

Northern Europe –184,746 182,517 132,125 153,656 –402,583 170,222 –373,865 48,442 

Western Europe –532,857 305,231 –334,789 833,652 231,507 517,389 –197,569 667,740 

Eastern Europe 387,805 402,378 1,005,523 402,655 1,614,976 295,200 498,964 291,295 

Southern Europe –1,643,790 726,932 –2,333,792 1,029,077 –2,346,845 790,992 –384,994 805,944 

North America 2,763,800 280,052 3,889,078 323,670 7,333,533 354,307 5,190,364 531,322 

Northern America 2,763,800 280,052 3,889,078 323,670 7,333,533 354,307 5,190,364 531,322 

Latin America and the Caribbean –1,210,162 305,703 –3,747,611 480,562 –2,571,922 670,580 –6,643,599 870,841 

Central America –529,533 439,039 –2,062,077 491,096 –710,688 501,597 –2,740,806 800,842 
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Forest 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean† –233,032 48,442 –402,286 56,467 –303,993 39,446 –291,875 91,237 

South America –447,597 200,157 –1,283,247 593,959 –1,557,241 810,092 –3,610,918 683,673 

Asia –15,246,655 8,035,745 –13,527,726 5,848,323 –22,445,192 9,705,012 –28,666,429 11,514,559 

Western Asia –154,390 151,983 –219,024 84,108 –325,461 111,248 –230,117 124,311 

South-central Asia –3,139,322 598,593 –3,209,997 512,219 –6,868,506 1,787,300 –10,229,244 2,077,118 

Eastern Asia –8,303,324 6,994,241 –6,356,738 4,102,591 –10,816,066 7,291,319 –10,261,098 8,098,845 

South-eastern Asia –3,649,619 1,337,596 –3,741,968 2,328,669 –4,435,160 2,652,763 –7,945,969 3,198,308 

Oceania –62,203 146,822 –74,396 210,214 –134,529 249,944 96,478 217,542 

Australia and New Zealand 76,010 148,369 90,636 208,521 13,476 229,979 247,589 187,479 

Melanesia† –138,213 9,001 –165,031 19,412 –148,006 25,604 –151,111 43,048 

Micronesia† 0 0 0 0 0 0 0 0 

Polynesia† – – – – – – – – 

China –7,283,813 5,903,549 –4,003,819 3,526,180 –9,094,914 7,001,862 –8,177,860 7,578,934 

USA 4,501,263 39,795 5,092,257 32,599 10,030,185 24,887 5,331,891 274 

†Excludes small islands with populations under 300,000. SD, standard deviation. 
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Table A10: Net migration for inland water ecosystems. 

Inland waters 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global 26,239,755 11,986,824 22,964,579 11,901,504 48,317,797 16,879,852 53,198,650 22,631,857 

Africa 3,776,768 1,300,227 4,862,038 2,092,590 6,955,777 1,996,716 8,953,533 2,998,404 

Northern Africa 726,704 270,255 1,654,480 1,072,488 1,174,516 709,598 2,189,453 1,248,683 

Middle Africa 1,096,921 779,031 1,495,776 599,422 2,838,061 795,438 2,576,963 1,784,210 

Western Africa 2,033,948 511,900 1,940,994 781,998 3,091,941 886,848 4,257,670 799,519 

Eastern Africa –94,052 157,479 –201,280 174,422 –304,840 140,680 –203,265 293,994 

Southern Africa 13,248 32,212 –27,933 50,175 156,099 55,742 132,712 28,917 

Europe 1,057,203 827,424 2,198,234 1,684,662 3,773,348 1,475,357 3,157,297 1,589,179 

Northern Europe 319,531 220,483 616,477 243,462 536,062 274,516 1,554,861 442,343 

Western Europe 1,944,772 849,671 2,749,223 1,598,918 2,592,941 1,086,929 1,896,116 1,203,084 

Eastern Europe –605,643 488,255 –284,984 350,172 1,429,208 406,176 –116,653 291,702 

Southern Europe –601,457 354,738 –882,483 353,654 –784,863 247,088 –177,027 284,524 

North America 4,006,605 131,072 5,205,753 91,505 6,791,637 153,567 3,252,150 211,235 

Northern America 4,006,605 131,072 5,205,753 91,505 6,791,637 153,567 3,252,150 211,235 

Latin America and the Caribbean –278,593 1,796,910 –166,915 1,881,425 2,344,029 1,820,756 –258,084 3,060,003 

Central America –231,274 1,794,233 –382,117 1,934,581 1,746,485 1,749,343 39,758 2,821,734 
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Inland waters 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean† –148,496 44,503 –217,717 45,295 –159,187 33,931 –125,803 37,764 

South America 101,176 221,385 432,920 342,932 756,730 299,920 –172,039 516,937 

Asia 17,373,072 10,244,739 10,447,294 8,535,855 28,050,171 15,391,386 37,739,024 18,713,311 

Western Asia 962,871 127,105 988,978 113,848 1,068,785 287,103 900,229 404,637 

South-central Asia –299,285 1,423,366 –508,087 940,517 1,551,761 3,960,461 16,414,279 6,073,880 

Eastern Asia 10,722,804 7,947,469 4,955,685 4,902,057 16,812,375 9,880,114 9,812,356 10,974,587 

South-eastern Asia 5,986,682 2,794,146 5,010,717 5,374,944 8,617,250 4,886,621 10,612,161 6,323,496 

Oceania 304,700 32,643 418,175 31,271 402,835 39,157 354,729 42,660 

Australia and New Zealand 267,470 29,242 379,579 24,678 382,024 31,260 298,864 19,950 

Melanesia† 41,527 4,074 44,213 9,422 24,837 16,745 61,792 26,308 

Micronesia† 0 0 0 0 0 0 0 0 

Polynesia† –4,296 1,236 –5,617 1,130 –4,027 1,733 –5,926 3,177 

China 10,233,395 7,698,982 3,943,029 4,839,183 16,286,948 9,835,224 9,510,199 10,858,893 

USA 5,434,782 72,574 5,958,090 65,495 8,857,790 53,429 2,030,171 365 

†Excludes small islands with populations under 300,000. SD, standard deviation. 
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Table A11: Net migration for dryland ecosystems*. 

Drylands 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global –10,516,579 4,951,097 –10,374,055 5,469,493 –24,167,885 6,996,494 –38,382,564 11,661,890 

Africa –5,052,978 641,987 –8,703,231 1,154,282 –8,139,583 1,427,998 –10,567,916 1,286,780 

Northern Africa –1,460,461 255,234 –1,863,148 374,156 –3,289,764 277,441 –3,190,984 275,067 

Middle Africa 221,673 93,340 129,277 138,037 792,765 100,457 284,039 195,939 

Western Africa –2,243,963 524,035 –3,250,066 700,028 –4,567,458 969,115 –5,081,854 1,088,235 

Eastern Africa –1,522,563 166,287 –3,496,587 282,933 –2,280,299 442,718 –2,412,802 456,728 

Southern Africa –47,665 169,115 –222,706 271,876 1,205,174 404,397 –166,315 367,875 

Europe –2,345,018 696,242 –2,209,334 872,554 727,774 672,629 1,041,311 1,016,088 

Northern Europe –64,393 1,404 –40,225 5,464 –96,897 3,995 –79 272 

Western Europe 49,657 62,258 –81,528 40,546 –95,064 29,126 –3,561 36,754 

Eastern Europe –949,202 175,801 –143,563 105,294 1,647,874 93,812 8,976 232,572 

Southern Europe –1,381,080 755,261 –1,944,018 928,279 –728,138 610,440 1,035,976 885,906 

North America 4,181,696 77,726 3,891,953 76,619 6,907,934 108,591 2,678,959 131,611 

Northern America 4,181,696 77,726 3,891,953 76,619 6,907,934 108,591 2,678,959 131,611 

Latin America and the Caribbean –3,901,348 2,825,701 –4,976,008 3,561,389 –9,041,412 3,608,942 –8,520,219 4,047,024 

Central America –1,456,176 2,698,110 –1,734,821 2,972,629 –5,356,753 2,648,881 –3,587,938 3,783,031 
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Drylands 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean† –161,540 116,181 8,184 185,667 165,775 123,340 36,442 88,208 

South America –2,283,632 725,462 –3,249,371 965,465 –3,850,434 1,432,168 –4,968,724 1,378,847 

Asia –3,396,570 3,480,071 1,598,429 1,586,882 –14,598,690 4,715,871 –23,059,970 9,133,360 

Western Asia –419,975 220,028 –1,253,807 221,486 –1,582,500 625,247 545,691 1,140,480 

South-central Asia 785,373 1,447,820 356,273 1,225,423 –11,318,740 3,524,224 –19,199,024 7,791,012 

Eastern Asia –4,671,966 2,446,560 1,827,890 1,540,289 –2,192,152 2,840,159 –4,585,595 3,632,131 

South-eastern Asia 909,998 343,922 668,073 1,075,895 494,701 741,119 178,958 1,783,549 

Oceania –2,360 80,656 24,137 97,085 –23,908 100,948 45,271 87,228 

Australia and New Zealand –6,042 80,624 19,686 97,104 –29,536 102,309 36,204 89,834 

Melanesia† 3,682 70 4,451 916 5,628 1,918 9,067 3,960 

Micronesia† – – – – – – – – 

Polynesia† – – – – – – – – 

China –4,650,766 2,447,093 1,839,184 1,539,493 –2,083,405 2,841,297 –4,585,784 3,632,297 

USA 3,841,379 217 3,768,877 171 6,722,214 1,026 2,429,264 154 

*Includes dry subhumid, semiarid, and arid subsystems, but not hyperarid sybsystems. †Excludes small islands with populations under 300,000. SD, standard 
deviation. 
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Table A12: Net migration for polar ecosystems. 

Polar 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global –992,046 156,914 141,566 130,505 1,076,110 147,530 21,792 31,023 

Africa – – – – – – – – 

Northern Africa – – – – – – – – 

Middle Africa – – – – – – – – 

Western Africa – – – – – – – – 

Eastern Africa – – – – – – – – 

Southern Africa – – – – – – – – 

Europe –150,491 94,914 327,944 54,233 897,189 86,657 23,015 25,796 

Northern Europe 83,475 105,423 272,535 73,020 299,380 100,587 7,308 20,581 

Western Europe – – – - – – – – 

Eastern Europe –233,966 82,300 55,409 104,953 597,808 110,270 15,707 14,700 

Southern Europe – – – – – – – – 

North America –841,317 88,643 –186,197 96,236 179,125 89,892 –1,102 9,557 

Northern America –841,317 88,643 –186,197 96,236 179,125 89,892 –1,102 9,557 

Latin America and the Caribbean – – – – – – – – 

Central America – – – – – – – – 
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Polar 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean – – – – – – – – 

South America – – – – – – – – 

Asia –239 34 –181 27 –204 0 –121 6 

Western Asia – – – – – – – – 

South-central Asia –239 34 –181 27 –204 0 –121 6 

Eastern Asia – – – – – – – – 

South-eastern Asia – – – – – – – – 

Oceania – – – – – – – – 

Australia and New Zealand – – – – – – – – 

Melanesia – – – – – – – – 

Micronesia – – – – – – – – 

Polynesia – – – – – – – – 

China – – – – – – – – 

USA 756,780 63,343 817,267 56,074 2,662,604 40,245 7,033 0 
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Table A13: Net migration for island ecosystems*. 

Island 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Global –2,974,210 562,559 –4,548,724 434,454 –3,575,448 483,853 –1,889,641 742,835 

Africa –96,520 20,407 –51,192 21,384 94,571 22,502 29,604 41,545 

Northern Africa –10,921 1,084 –3,330 1,967 2,992 2,394 –9,886 2,894 

Middle Africa –38,308 3,568 12,283 980 20,164 1,158 –953 3,094 

Western Africa –50,239 2,060 –39,248 3,672 18,780 3,964 –32,781 2,524 

Eastern Africa 2,951 19,177 –20,893 24,563 52,641 26,060 73,230 41,376 

Southern Africa –2 1 –3 2 –6 2 –5 3 

Europe 86,162 269,447 –476,781 274,244 1,068,005 239,220 2,728,675 277,818 

Northern Europe 135,048 204,098 63,807 200,461 1,280,721 181,111 2,628,328 203,810 

Western Europe –8,219 9,907 –27,601 22,359 –19,346 14,286 –10,830 16,154 

Eastern Europe 30,340 7,660 47,347 6,853 9,943 3,525 5,615 9,742 

Southern Europe –71,008 244,488 –560,335 310,977 –203,313 248,532 105,561 258,683 

North America –1,738,358 105,655 –394,731 99,196 –2,799,245 112,410 –1,250,022 92,195 

Northern America –1,738,358 105,655 –394,731 99,196 –2,799,245 112,410 –1,250,022 92,195 

Latin America and the Caribbean –994,083 50,475 –1,210,829 41,609 –1,091,994 20,990 –1,130,246 61,204 

Central America 5,105 3,924 7,795 5,003 6,800 7,580 –12,597 12,477 
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Island 

1970 1980 1990 2000 

Ecosystem/UN region 

Average SD Average SD Average SD Average SD 

Caribbean† –1,116,374 40,323 –1,380,492 45,095 –1,252,019 28,032 –1,236,072 52,781 

South America 117,186 21,149 161,868 12,392 153,225 22,240 118,423 31,025 

Asia –121,688 393,600 –2,223,978 287,066 –851,313 469,766 –2,310,161 655,626 

Western Asia 996 21,949 28,932 32,341 23,081 17,492 112,588 37,573 

South-central Asia –402,230 29,597 –594,291 49,877 –697,333 73,875 –802,791 77,833 

Eastern Asia 886,034 403,611 –1,311,874 260,648 2,480,595 523,847 1,066,651 596,279 

South-eastern Asia –606,487 87,749 –346,744 114,725 –2,657,656 134,491 –2,686,609 159,798 

Oceania –109,724 20,510 –191,213 27,489 4,528 32,496 42,510 28,162 

Australia and New Zealand –17,564 18,757 –57,909 27,031 124,503 30,867 147,621 20,744 

Melanesia† –41,406 4,605 –79,601 5,627 –81,101 3,551 –61,568 11,031 

Micronesia† 0 0 0 0 0 0 0 0 

Polynesia† –50,753 2,016 –53,703 1,902 –38,874 2,635 –43,543 2,913 

China 323,684 383,410 –1,046,509 261,939 1,968,561 521,790 734,250 593,107 

USA –121,480 54 756,692 94 –59,764 317 –1,234,387 75 

*See also Table A13 for islands smaller than 300,000 persons. †Excludes small islands with populations under 300,000. SD, standard deviation. 
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Table A14: Net migration for most small island states excluded in the HYDE rates. 

Country NM 1970s NM 1980s NM 1990s NM 2000s 

Bermuda 66 0 1,464 1,605 

Cook Islands –7,402 –4,199 –5,909 –6,701 

Fed. State of Micronesia –9,000 –2,000 –16,000 –19,000 

Guam –3,000 1,000 –8,000 1,000 

Maldives –11 47 32 109 

Marshall Islands –5,758 363 –7,061 –4,086 

Northern Mariana Islands –7,810 14,807 13,358 –30,622 

Nauru –1,187 –419 –1,863 –2,758 

Palau –756 –173 2,523 329 

French Polynesia 6,000 2,000 1,000 2,000 

Saint Helena 343 –242 0 0 

Seychelles –2,955 –5,176 –1,960 920 

Tuvalu 196 –245 –796 –918 

Wallis and Futuna –284 292 –1,198 –1,002 

Greenland 37 0 –5,484 –3,448 

Total –31,521 6,056 –29,894 –62,572 

Sources: United Nations World Population Prospects 2008 and US Census Bureau International Database. NM, net migration. 
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Figure A1: Estimated net migration for all ecosystems. 
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Figure A2: Estimated net migration for the coastal ecosystem (error bars 
represent the 95% confidence intervals of model run outputs). 
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Figure A3: Estimated net migration for the mountain ecosystems* (error bars 
represent the 95% confidence intervals of model run outputs). 

 
*Includes only humid tropical upper montane, humid temperate upper montane and pan-mixed, humid temperate 
alpine/nival, humid tropical alpine/nival, dry cool temperate montane, dry boreal/subalpine, dry subpolar/alpine and 
polar/nival. Lower and lower/mid-montane and hill ecosystems were removed. 
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Figure A4: Estimated net migration for the cultivated ecosystems* (error bars 
represent the 95% confidence intervals of model run outputs). 

*Includes all but pasture lands. 
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Figure A5: Estimated net migration for the forest ecosystems (error bars 
represent the 95% confidence intervals of model run outputs). 

 

 

 



MR4 72 

Figure A6: Estimated net migration for the inland water ecosystems (error bars 
represent the 95% confidence intervals of model run outputs). 
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Figure A7: Estimated net migration for the dryland ecosystems* (error bars 
represent the 95% confidence intervals of model run outputs). 

 

*Does not include hyperarid subsystems. 
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Map Set A1: Maps of estimated net migration in coastal ecosystems by decade. 
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Note: 2000–2010 net migration estimates are not based on observed population distributions in 2010. 
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Map Set A2: Maps of estimated net migration in mountain ecosystems by 
decade. 
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Note: 2000–2010 net migration estimates are not based on observed population distributions in 2010. 
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Map Set A3: Maps of estimated net migration in dryland ecosystems by decade. 
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Note: 2000–2010 net migration estimates are not based on observed population distributions in 2010. 
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Map Set A4: Mediterranean estimated net migration by decade. 
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Note: 2000–2010 net migration estimates are not based on observed population distributions in 2010. 
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Figure A8: Mediterranean estimated net migration for the coastal ecosystem 
(error bars represent the 95% confidence intervals of model run outputs). 

 
Figure A9: Mediterranean estimated net migration for the mountain ecosystem* 
(error bars represent the 95% confidence intervals of model run outputs). 

 
*Includes only humid tropical upper montane, humid temperate upper montane and pan-mixed, humid temperate 
alpine/nival, humid tropical alpine/nival, dry cool temperate montane, dry boreal/subalpine, dry subpolar/alpine and 
polar/nival. Lower and lower/mid-montane and hill ecosystems were removed. 
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Figure A10: Mediterranean estimated net migration for the cultivated ecosystem* 
(error bars represent the 95% confidence intervals of model run outputs). 

 

*All but pasture. 

Figure A13: Mediterranean estimated net migration for the forest ecosystem 
(error bars represent the 95% confidence intervals of model run outputs). 
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Figure A14: Mediterranean estimated net migration for the inland water 
ecosystem (error bars represent the 95% confidence intervals of model run 
outputs). 

 

Figure A15: Mediterranean estimated net migration for the dryland ecosystem* 
(error bars represent the 95% confidence intervals of model run outputs). 
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*Does not include the hyperarid ecosystem. 

Map A5: Comparison of net migration estimates using imputed RNIs vs. 
observed RNIs, China, 1990s. 
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Table A15: China net migration (NM) estimates based on observed RNIs and 
imputed RNIs, for the decade of the 1990s. 

Ecosystem NM based on 
observed RNIs 
(mean) 

NM based on 
observed RNIs 
(SD) 

NM based on 
imputed RNIs 
(mean) 

NM based on 
imputed RNIs (SD) 

Observed 
within SD? 

Coastal 14,819,400 13,054 26,344,387 13,634,899 Yes 

Mountain –85,562 1,633 –19,057,800 9,718,136 No 

Cultivated –11,463,876 38,303 –17,248,133 8,608,419 Yes 

Forest –2,892,429 9,568 –9,099,173 7,002,821 Yes 

Inland water 7,584,715 14,769 16,279,880 9,833,004 Yes 

Dryland 207,745 8,967 –2,088,252 2,842,969 Yes 

Island 1,454,086 1,193 1,967,995 521,636 Yes 

SD, standard deviation. 

Figure A16: Scatter plot of China net migration estimates based on observed 
RNIs and imputed RNIs for the decade of the 1990s. 
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Map A6: Comparison of net migration estimates, US Census Bureau and 
modelled data, 1990s. 

 
Table A16: US net migration (NM) by ecosystem, US Census compared estimates 

with modelled estimates, decade of the 1990s. 
 
Ecosystem US Census NM Model NM (mean) 

Coastal 1,404,241 2,941,103 

Mountain 1,830,652 7,237,223 

Cultivated 4,011,386 9,865,971 

Forest 3,709,322 10,030,185 

Inland water 1,811,048 8,857,790 

Dryland 2,705,433 6,722,214 

Polar –329 2,662,604 

Island –314,599 –59,764 
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Figure A17: Scatter plot of net migration (NM) estimates from the US Census 
Bureau and model ouputs for ecosystems, decade of the 2000s. 
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Map A7: Comparison of net migration estimates, US Census Bureau and 
modelled data, 2000s. 

 

Table A16: US net migration (NM) by ecosystem, US Census compared 
estimates with modelled estimates, decade of the 2000s. 
Ecosystem US Census NM Model NM (mean) 

Coastal 1,789,568 –1,052,101 

Mountain 2,051,641 1,014,054 

Cultivated 5,153,437 10,488,022 

Forest 4,107,755 24,887 

Inland water 2,113,206 2,030,171 

Dryland 3,516,311 2,429,264 

Polar 3,305 7,033 

Island –420,219 –1,234,387 
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Figure A18: Scatter plot of net migration (NM) estimates from the US Census 
Bureau and model ouputs for ecosystems, decade of the 2000s. 
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Appendix B: HYDE – History Database 
of the Global Environment 
The History Database of the Global Environment (HYDE) was originally designed for 
testing and validating the Integrated Model to Assess the Global Environment (the 
IMAGE Model, see Solomon, 1994; Klein Goldewijk and Van Drecht, 2006). As one of 
the basic driving factors influencing environmental change, a global 100-year historical 
population map was one of the integral components of the HYDE database. 

The National Center for Geographic Information and Analysis (NCGIA) 0.5 × 0.5º 
longitude/latitude population density database (Tobler et al., 1995) was used as the 
starting point for the first version of the HYDE global historical population map 
covering the period 1890–1990 (Klein Goldewijk et al., 1997). IMAGE 2.1 country 
borders were overlaid on the NCGIA database. NCGIA database grid cells belonging 
to IMAGE 2.1 countries were aggregated to country totals. Country totals were 
adjusted to match country totals from the UN population database for the year 1994. 
Countries large enough to cover at least one grid cell were assigned to one of 13 
IMAGE 2.1 geographic regions; the remaining countries were omitted. Historical 
country population data points from Mitchell (1975, 1982, 1983) were linked to the 
1950 base year of the UN database using a country-specific logistic curve determined 
through the earliest available data point and the 1950 UN data point. The growth rate, 
x, of the curve is calculated by: 

x = (POPrec/POPhis)1/(Trec – This) – 1 

where POPrec and POPhis are the most recent and most historic population estimates, 
respectively, and Trec and This are the years of the population estimates. The curve was 
used to calculate earlier historic values which were then checked against other 
available sources. 

In cases where the Trec –This was too small, thereby producing a skewed 1890 
estimate, the regional growth rates of Durand (1977) were used instead. 

Finally, adopting the assumption that high population-density areas remain in the 
same place over time, the population distribution represented by the NCGIA database 
was applied to the HYDE country totals and population densities were scaled to a 
0.5 × 0.5º longitude/latitude grid. 

Klein Goldewijk (2001) presented HYDE 2, updated and extended using the UN 
country population database for the period 1950–1995 (United Nations, 1997) and 
historical country population estimates for the period 1750–1993 from Mitchell 
(1993,1998a,b) and (for the period 1820–1992) from Maddison (1995). These 
estimates were scaled to match UN country population data for the year 1950 in order 
to create a ~300-year (1700–1990) dataset consistent with the UN population 
database. Data gaps were filled in using a logistic curve (presumably as described in 
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Klein Goldewijk et al., 1997) and checked against other available estimates. The same 
methodology described above (Klein Goldewijk et al., 1997) was used to generate 
updated gridded population density maps. To allow for at least some internal 
population changes in very large countries like the USA, Canada, India, China, etc., 
subnational data derived from Mitchell (1993, 1998a,b) was used. 

HYDE version 3 (Klein Goldewijk, 2005) incorporated subnational-level historical 
population data acquired from Populstat database (Lahmeyer, 2004) and The 
Gazetteer (2004) [cross-checked with data from Mitchell (1993, 1998a,b), Madison 
(1995) and many local country studies], and applied population growth rates from 
Grigg (1987) to all of the administrative units for which no data were available for 
historical time periods. The new database covered a 300-year period (from 1700–
2000) and was built upon a new global subnational-level administrative boundary map 
developed by Klein Goldewijk et al, (2004) of National Institute for Public Health and 
the Environment (RIVM). The new map consisted of 222 countries divided into 3,441 
administrative units, and provided the framework for data collection. ISO3166–2 level 
coding was used, if available, for all countries in the world (many of the historical 
population data sources used in this study are provided at this level). If data were not 
available at the ISO3166–2 level, they were converted to match that level. 

HYDE 3.1, which was applied to this Foresight Project net migration modelling study, 
population totals for each country match the exact United Nations World Population 
Prospect (2008 revision) population numbers after 1950, except for Taiwan, in which 
the authors used data from Taiwan National Statistics instead (Godewijk, personal 
communication). 

Historical time series were constructed at the subnational level where the data were 
robust, and resulting country totals were checked against other sources where 
possible. Data gaps were filled through interpolation, and where no data were 
available, regional growth rates given by Grigg (1987) were used to hindcast to the 
base year 1700. 

For cases in which historical data consisted of country totals while recent data 
consisted of subnational totals, the ratio of all subnational units for a given year 
compared with the country total for that year was applied to the historical country total 
to obtain historical subnational population numbers. In other words, the spatial 
differentiation within a country was assumed to have remained constant over time. 

Given that the purpose of the study is to present a broad demographic overview of the 
past 300 years, useful for climate-change modellers, the author feels it is defensible to 
use growth rates as published in literature in combination with other available sources, 
and asserts that growth rates from Grigg (1987) for 10 world regions are generally in 
agreement with rates found in other studies (Durand, 1974; UN, 2003). Grigg’s 
regional growth rates were applied to all countries within a region, and, when no 
subnational growth rates were available, to all administrative units in a particular 
country of that region. 
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To address the uncertainties inherent in applying a single regional growth rate to all 
country/province levels in that region, ±5, 10, and 20% uncertainty intervals were 
computed on growth rates, yielding a bandwidth in the total population numbers for 
each country, and accumulating into regional bandwidths and a global one (Klein 
Goldewijk and Van Drecht, 2006: 100–101). 

Historical population numbers were downscaled on a subnational basis, using 
statistics and the literature, to the 5-minute Landscan population counts map (2006) to 
produce HYDE 3 population density maps on a 5 × 5-minute resolution for 10-year 
time steps for the period 1700–1970 (Klein Goldewijk, 2005).  

Klein Goldewijk et al. (2010, 2011) present HYDE3.1, a revision and extension HYDE 
3.0, including updated and internally consistent historical population estimates for the 
extended period of 10,000BC to AD2,000, that is the whole Holocene. National 
historical population estimates are based on historical population numbers of McEvedy 
and Jones (1978), Maddison (2001) and Livi-Bacci (2007). Supplemented with 
subnational population numbers from Populstat (Lahmeyer, 2004) and other sources, 
time series were constructed for each subnational administrative unit of every country 
of the world. Current administrative units and their boundaries were kept constant over 
time, and historical sources were adjusted to match the current boundaries of HYDE 
3.1 (i.e. ‘by taking fractions of former larger administrative units’, p. 566). Country and 
regional totals and population density were estimated and the resulting population 
growth rates in per cent per year per time period were computed. 

Spatial distribution for recent time periods was depicted by using weighing maps 
based on the 30′ × 30′ latitude/longitude Landscan (2006) population density map. 
Hindcasting required gradually replacing these with weighing maps based on proxies 
such as distance to water and soil suitability (Klein Goldewijk et al., 2011). 

Uncertainties 

The author’s acknowledge that, although the HYDE sources of historical population 
have been reviewed extensively, the further back one goes in time (pre-1950), the 
sparser the actual data on population distribution, and so the team developing HYDE 
had to rely heavily on ‘educated guesses’. Therefore, prior to the 1950s, the numbers 
must be treated with care, and especially so for the pre-1700 period. Despite this 
caution, the authors believe the hindcast estimates fall well within the range of those 
found literature, and both the estimates and resulting growth rates seem a ‘reasonable 
reconstruction of historical population trends’ (Klein Goldewijk et al., 2010). 

The authors attempted to quantify uncertainty in total population estimates by 
introducing ‘lower’ and ‘upper’ ranges beside the HYDE 3.1 estimate, based on the 
high end of the literature estimates. These estimates yield an increasing uncertainty 
range going back in time, e.g. ±1% in AD2000, ±25% in AD 1700 and ±100% in 
10,000BC. Considering the minimum and maximum results as extremes (since the high 
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end of the literature estimates were used), HYDE 3.1 can be considered a reasonable 
scenario for historical population growth (Klein Goldewijk et al., 2010). 

Table B1: Islands missing from HYDE v.3.1. 

Island Population (year 2000) 

Bermuda 62,960 

Cook Islands 19,601 

Federated State of Micronesia 122,692 

Guam 155,080 

Maldives 290,923 

Marshall Islands 51,127 

Northern Mariana Islands 72,736 

Niue – 

Nauru 12,218 

Pitcairn – 

Palau 19,175 

French Polynesia 233,167 

Saint Helena 77,187 

Svalbard – 

Seychelles 77187 

Tokelau – 

Tuvalu 10156 

Wallis and Futuna 14454 

Greenland 55974 
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Appendix C: Methods for imputing rates 
of natural increase 
This appendix includes sections that describe the imputation method for developing 
urban and rural rates of natural increase using two different statistical packages, and a 
third section that compares the two approaches. The purpose of the modelling was to 
impute missing values for urban and rural crude birth rates (CBRs) and crude death 
rates (CDRs) across all countries and for every year in the 41-year time span (1970–
2010) in order to obtain urban and rural rates of natural increase. We had 5,016 
observed urban/rural CBRs and CDRs across 231 countries and four decades: 766 for 
the 1970s, 1,198 for the 1980s, 1,458 for the 1990s and 1,594 for the 2000s. Sources 
included the UN Demographic Yearbook (DY) for CBRs and CDRs and the 
Demographic and Health Surveys (DHS)11 for CBRs only. In all, a total of 32,868 data 
points needed to be imputed. We had an extensive set of mostly national-level time-
series ancillary data with which to carry out the imputations (Table C1). Note that we 
subsequently replaced the imputed data for the USA with observed decadal rates of 
natural increase from the US Census Bureau, averaging the rates across urban and 
rural US counties based on population density [the top three deciles in county-level 
population density were classified as urban based on natural breaks in the rates of 
natural increase (RNI) data]. Section C1 describes the imputation methods using the 
multiple imputation (MI) package for R, Section C2 describes the imputation methods 
using the Amelia package for R and Section C3 compares the MI and Amelia 
packages. 

Section C1 – Description of imputation methods using MI 

Working dataset 
The working dataset included the following variables (see Table C1 for the codebook): 
isocode, year, countryname, uncode, totpop, urbpop, rurpop, gdppc, watsup, cntrycbr, 
cntrycdr, cbr_cbidb, cdr_cbidb, dyburbancbr, dyburbancdr, dybruralcbr, dybruralcdr, 
dhsurbancbr, dhsruralcbr, oecd, hiopec, rurpov, urbpov, pctubanjmp, pctruraljmp, 
urbwatsup, rurwatsup, un_region, un_majorarea, un_development_group, agri_kd, 
femurb15_49, urban_cwr, femrur15_49, rural_cwr, urban1q0, urban4q1, urban5q0, 
rural1q0, rural4q1, rural5q0, total1q0, total4q1, total5q0, literacyurban, literacyrural, 
literacytotal, tot_prop60, urb_prop60, rur_prop60, acsat, urbacsat, ruracsat, 
rural_birth_doc, urban_birth_doc, rural_measles, urban_measles, rural_mortality, 
urban_mortality, umdg7_water, rmdg7_water, totmdg7_water, umdg7_sant, 
rmdg7_sant, totmdg7_sant. 

It also included the following 199 countries/entities: 

                                            

11 See: http://www.measuredhs.com/. 
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Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, 
Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, 
Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, 
Brazil, Brunei Darussalam, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, 
Canada, Cape Verde, Central African Republic, Chad, Chile, China, China, Hong 
Kong SAR, China, Macao SAR, Colombia, Comoros, Congo, Costa Rica, Croatia, 
Cote d’Ivoire, Cuba, Cyprus, Czech Republic, Democratic Republic of the Congo, 
Dem. People’s Republic of Korea, Denmark, Djibouti, Dominica, Dominican Republic, 
Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Ethiopia, Fiji, 
Finland, France, French Guiana, Gabon, Gambia, Georgia, Germany, Ghana, Greece, 
Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Holy See, Honduras, 
Hungary, Iceland, India, Indonesia, Iran (Islamic Republic of), Iraq, Ireland, Israel, Italy, 
Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Kyrgyzstan, Lao 
People’s Democratic Republic, Latvia, Lebanon, Lesotho, Liberia, Libyan Arab 
Jamahiriya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, 
Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia 
(Fed. States of), Monaco, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, 
Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, 
Norway, Occupied Palestinian Territory, Oman, Pakistan, Palau, Panama, Papua New 
Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Puerto Rico, Qatar, Republic 
of Korea, Republic of Moldova, Romania, Russian Federation, Rwanda, Saint Kitts 
and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa, San Marino, Sao 
Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, 
Singapore, Slovakia, Slovenia, Solomon Islands, Somalia, South Africa, Spain, Sri 
Lanka, Sudan, Suriname, Swaziland, Sweden, Switzerland, Syrian Arab Republic, 
Tajikistan, TFYR Macedonia, Thailand, Timor-Leste, Togo, Tonga, Trinidad and 
Tobago, Tunisia, Turkey, Turkmenistan, Tuvalu, Uganda, Ukraine, United Arab 
Emirates, United Kingdom, United Republic of Tanzania, United States of America, 
Uruguay, Uzbekistan, Vanuatu, Venezuela (Bolivarian Republic of), Viet Nam, Western 
Sahara, Yemen, Zambia, Zimbabwe. 

Specification of the imputation model 
We used a customised version of the MI package for R to perform MI. In the MI 
package, each variable with missingness is modelled as a function of all other 
variables in an iterative process. The main differences between the MI runs and runs 
produced using the Amelia model (Section C1) are as follows: 

• Amelia used a gap-filled annual time series of CBRs and CDRs (allcbrcountry and 
allcdrcountry) based on interpolations between the 5-year rates available from the 
United Nations World Population Prospects 2008. 

• In Amelia, four separate imputation models were specified – one each for urban 
CBR, urban CDR, rural CBR and rural CDR – using for each run a different 8–10-
variable subset of the original 65 variables. This is much faster but utilises less 
multivariate information when imputing the missing values, and in particular does not 
utilise the information that each of these four variables contains about the other three. 
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Each variable with missingness is modelled using a ‘random intercept, random 
coefficient’ linear model. In other words, the intercepts over all country-years form a 
normal distribution while the coefficients for gross domestic product per capita (gdppc) 
and agriculture value added per worker (agri_kd) over all countries form normal 
distributions (unless gdppc or agri_kd is the dependent variable being modelled at that 
stage of the loop over all variables). The coefficients for the other variables are 
considered ‘fixed’ and estimated. This specification allows a considerable amount of 
heterogeneity across countries in how CBRs and CDRs (and other variables) relate to 
development. 

I ran 20 iterations for each of eight independent chains. One ‘iteration’ is essentially 
one complete loop so that each variable with missingness is modelled and imputed 
once and then the process repeats on the next iteration. The completed dataset 
reflected the state of the process at the end of the twentieth iteration for each of the 
eight chains. On iteration zero, no variable is modelled. Instead, the observations that 
are missing are filled in with random draws from a uniform distribution whose minimum 
and maximum are the observed minimum and maximum for that variable and country. 
When a country had no observed data on a variable, the minimum and maximum were 
taken from the observed minimum and maximum for that variable across all countries. 

Thus, on subsequent iterations, the dataset was provisionally filled in and each 
variable can be modelled. The following variables always entered the models – 
regardless of which side of the equation they happen to be on at a given time – in 
(natural) logarithm form: total population (totpop), urban population (urbpop), rural 
population (rurpop), gross domestic product per capita (gdppc) and agriculture value 
added per worker (agri_kd). For six ‘city-states’ (e.g. Hong Kong, Singapore), there is 
no rural population in some years, in which case I artificially changed the observed 
values to 1 (thousand) in order to take the logarithm. When they are on the left-hand 
side (to impute their missing values), I used the following steps which approximate the 
idea of ‘posterior predictive distribution’ imputation: 

1. estimate the model (using the blmer function in the forthcoming blmer R 
package by Vincent Dorie at Columbia University); 

2. given the estimated parameters, draw new parameters from the multivariate 
distribution implied by the estimates; 

3. using the new parameters, construct a linear predictor for each observation that 
is missing in the original dataset; and 

4. for each observation that is missing in the original dataset, draw an imputed 
value from a normal distribution with expectation equal to its linear predictor and 
variance equal to the previously drawn error variance. This overwrites whatever 
was the previous imputation for that observation. 
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When the imputation is finished, these variables were transformed back into their 
original scale using the exp() function. Other than that, there was no ‘post-processing’. 

The other variables, which are typically ratios of some sort, were not transformed but 
cannot be negative. The following steps were taken: 

1. estimate the model (again using blmer); 

2. given the estimated parameters, draw new parameters from the multivariate 
distribution implied by the estimates; 

3. using the new parameters, construct a linear predictor for each observation that 
is missing in the original dataset; and 

4. for each observation that is missing in the original dataset, draw an imputed 
value from a normal distribution truncated at zero with expectation equal to its 
linear predictor and variance equal to the previously drawn error variance. This 
overwrites whatever was the previous imputation for that observation. 

Thus, these variables needed no additional transformation or post-processing at the 
end. 

Convergence 
In principle, one should verify that the process converges for all unknowns. However, 
there are almost 400,000 missing values in the original dataset (including the auxiliary 
variables used to estimate urban and rural CBRs and CDRs) plus thousands of 
parameters to estimate. Thus, it was infeasible to do a rigorous convergence analysis 
in the time available (which also would have necessitated many more iterations). 
Instead, we tend to judge the convergence in MI by whether the variance in variable 
means (across the eight chains) is small relative to the mean (across the eight chains) 
of the variable variances. In other words, is the additional variance induced by the fact 
that the eight chains are not exactly in the same spot small relative to the total 
variance in a variable. 

In this case, that seemed to be true despite only running 20 iterations. However, the 
total variance in each variable tends to be fairly large owing to vast cross-country 
differences between the developed and developing worlds. In principle, it would 
probably have been better to judge the convergence on a country-by-country basis 
rather than for the world, although some countries have very little variance over time in 
some variables. 

Analysis 
The main limitation of this way of modelling the variables and then imputing the values 
is that it does not rigorously take into account the time-series nature of the data. Thus, 
there is almost assuredly autocorrelation and heteroskedasticity, which induces no 
bias but does compromise the estimates of uncertainty. Typically, the estimated 
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uncertainty is biased downward. The main advantage is that all the available 
information is used so that the joint distribution of the completed variables is 
approximately correct under the assumption that the models are approximately correct. 
In the case of the Amelia runs, where the four important variables are imputed 
separately, each with a different subset of included variables, nothing ensures that the 
completed joint distribution of urban CBRs, urban CDRs, rural CBRs and rural CDRs is 
internally coherent or coherent with national CBRs and CDRs. Amelia is only ensuring 
that each of these four variables is coherent with the subset of variables that were 
imputed along with it. 

The main tool to judge the quality of the imputations was a set of four plots by country 
for the years between 1970 and 2010, averaging over the eight completed datasets. 
The four plots were: 

• Country-level CBRs and CDRs from the UN World Population Prospects (cntrycbr 
and cntrycdr) with estimates for every 5 years compared with country level CBRs and 
CDRs from the US Census Bureau’s International Database (cbr_cbidb and 
cdr_cbidb) (Figure C1). 

• Urban CBRs and CDRs from the UN Demographic Yearbook (dyburbancbr and 
dyburbancdr) compared to rural CBRs and CDRs from the same source (dybruralcbr 
and dybruralcdr) (Figure C2). 

• Urban CBRs and CDRs from the UN Demographic Yearbook (dyburbancbr and 
dyburbancdr) compared to imputations for urban CBRs and CDRs for the DHS time 
series, which only had observations for urban and rural CBRs (dhsurbancbr and 
dhsurbancdr). 

• Country-level CBRs from the UN World Population Prospects (cntrycbr) compared to 
weighted averages of the imputed values for the Demographic Yearbook series 
(dyburbancbr and dybruralcbr)-based urban and rural populations in the country, and 
analogously for death rates (Figure C3). 

I was primarily looking for rough coherence across different sources of data on the 
same conceptual variables (i.e. comparing imputed CBR series with one another). In 
the second case, there is no reason to think that urban vital statistics would be the 
same as rural vital statistics, but we would expect that urban birth and death rates to 
be consistently lower than the rural counterparts within a country. The plots for some 
countries were more coherent than for other countries, but overall I felt that coherence 
was lacking. 

Although the plots indicated fully observed data points by superimposing circles on the 
lines, I was less concerned with whether the imputed values were coherent with the 
observed values for a couple of reasons. First, in many cases, there were no observed 
data on vital statistics at the subnational level. Second, in many cases, the observed 
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Figure C1: CBRs (green) and CDRs (red) imputed for the United Nations World 
Population Prospects series (solid line) and Census Bureau (dashed line). 
Filled circles represent the UN published estimates, and open circles represent the 
Census Bureau’s observed data. 

Figure C2: CBRs (green) and CDRs (red) imputed for the urban areas (solid 
line) and rural areas (dashed line). Observed data from the UN Demographic 
Yearbook represented by circles. 
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Figure C3: Country level CBRs (green) and CDRs (red) imputed for the United 
Nations World Population Prospects series (solid line) compared with a 
weighted average of the UN Demographic Yearbook urban/rural CBRs and CDRs 
(dashed line). Filled circles represent the UN published estimates, and open circles 
represent the Demographic Yearbook’s observed data. 

data are presumably measured with considerable error, so it could be the case that the 
model is implying imputations that are consistent with the true concept, but the 
observed measurement of that concept is off. That said, in many countries, the 
imputed values were consistently higher or lower than the observed values. 

For each country, annual RNIs were calculated by subtracting the CDR from the CBR. 
The decadal urban rates of natural increase (per cent change due to natural increase 
over the decade) were calculated by multiplying the annual rates of natural increase 
for urban areas by the urban population and summing the population growth due to 
natural increase and dividing by the urban population at the start of the period. The 
same steps were used to calculate the rural rates. 

Note that it is possible that the imputations are largely correct on average within a 
decade but poor in any particular year, in which case the decadal statistics are 
presumably viable for their intended purpose. However, it is also possible that the 
imputations are, for example, systematically too low in the 1970s and systematically 
too high in the 1980s, in which case the migration estimates for that country between 
1970 and 1990 would be biased. 
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Section C2 – Imputation using Amelia and post-imputation 
processing steps 

Working dataset 
This imputation was carried out using the same dataset as described in Section C1. I 
re-created the unique identifier (uniID) by concatenating ISO3 code and year. 

The urban population variable (urbpop) was calculated as the difference between total 
population (totpop) and rural population (rurpop) because the dataset did not have 
decimal values for urban population anymore. This step was not used in the 
imputations itself but was used in the post-processing of the imputed values, for 
example the adjustment to total country CBR and CDR and calculation of NRIs. 

Identifying the variables for inclusion in the imputation model 
I calculated the bivariate correlation matrix of all continuous and ordinal variables in 
the working dataset using Kendall’s correlation coefficient on all pairwise complete 
data points for each variable pair. From this matrix, I identified the variables with (a) 
the highest correlation with the outcome or target variables (i.e. with urban and rural 
CBR and CDR from the Demographic Yearbook) and (b) reasonably high tempo-
spatial coverage to contribute meaningfully to informing the imputation model and 
produce sensible imputations. 

Running the imputations in Amelia 
I ran the following imputation models. 

Urban CBR 

To impute the urban CBRs, I used five auxiliary variables: gdppc, the interpolated UN 
World Population Prospects CBRs and RNIs (allcbrcountry and allnircountry), and 
dummy variables for more developed and less developed countries (mdr and ldr). The 
complete inputs were ‘ISOcode’, ‘year’, ‘uniID’, ‘gdppc’, ‘allcbrcountry’, ‘allnircountry’, 
‘dyburbancbr’, ‘dybruralcbr’, ‘mdr’ and ‘ldr’. 

The imputation model was specified as follows: 

a.out <- amelia(dats[,vars.imp]), m = 5, p2s = 1, frontend = FALSE, idvars = ‘uniID’, 
ts = ‘year’, cs = ‘ISOcode’, polytime = 1, splinetime = 3, intercs = TRUE, lags = NULL, 
leads = NULL, startvals = 1, tolerance = 0.0001, logs = ‘gdppc’, sqrts = NULL, 
lgstc = NULL, noms = c(‘mdr’,’ldr’), ords = NULL, incheck = TRUE, collect = FALSE, 
arglist = NULL, empri = 500, priors = NULL, autopri = 0.5, emburn = c(0,0), 
bounds = NULL, max.resample = 100). 

Urban CDR 

To impute the urban CDRs, I used four auxiliary variables: the interpolated UN World 
Population Prospects CDRs (allcdrcountry), the country literacy rate (literacytotal) and 
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dummy variables for more developed and less developed countries (mdr and ldr). The 
complete inputs included ‘ISOcode’, ‘year’, ‘uniID’, ‘allcdrcountry’, ‘dyburbancdr’, ‘mdr’, 
‘ldr’ and ‘literacytotal’. 

The imputation model was specified to produce m = 5 separate, completed datasets 
with a linear effect of time (year) that can vary across countries and which is smoothed 
by third-degree polynomials. Per capita gross domestic product is log transformed, 
while degree of development expressed in classifications such as least developed 
were included as nominal variables. The model also uses ridge priors, which shrinks 
the covariances toward zero while retaining the empirical variances and mean 
structure. Ridge priors are useful if there is multi-collinearity in the data. The starting 
point for each imputation chain is an identity matrix. 

Urban CDR 

To impute the urban CDRs, I used four auxiliary variables: the interpolated UN World 
Population Prospects CDRs (allcdrcountry), the country literacy rate (literacytotal) and 
dummy variables for more developed and less developed countries (mdr and ldr). The 
complete inputs included ‘ISOcode’, ‘year’, ‘uniID’, ‘allcdrcountry’, ‘dyburbancdr’, ‘mdr’, 
‘ldr’ and ‘literacytotal’ and model specifications were otherwise the same as for urban 
CBR. 

Rural CBR 

To impute the rural CBRs, I used three auxiliary variables: gross domestic product per 
capita (gdppc), the interpolated UN World Population Prospects CBRs (allcbrcountry), 
and the rural literacy rate (literacyrural). The complete inputs included ‘ISOcode’, 
‘year’, ‘uniID’, ‘gdppc’, ‘allcbrcountry’, ‘dybruralcbr’ and ‘literacyrural’. Model 
specification followed the principles of urban CBR. 

Rural CDR 

To impute the rural CDRs, I used four auxiliary variables: the interpolated UN World 
Population Prospects CDRs (allcdrcountry) and dummy variables for more developed, 
less developed and less developed without least developed countries (mdr, ldr, 
ldr_noleast). The complete inputs included ‘ISOcode’, ‘year’, ‘uniID’, ‘allcdrcountry’, 
‘dybruralcdr’, ‘mdr’, ‘ldr’, and ‘ldr_noleast’ and model specification followed the same 
principles as for urban CBR. 

Post processing 
Following the generation of five sets of Amelia imputations for urban and rural CBRs 
and CDRs, respectively (for 20 sets of imputed values in total), I ran a LOESS local 
regression smoother over the imputed dataset (over imputed and observed data 
together). The objective for doing this was to smooth out the otherwise measurably 
volatile imputations (a result of the weak imputation models). 
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Following the LOESS smoothing, I replaced the smoothed observed values again with 
their raw observed values because we wanted to keep the observed values and did 
not want to replace them with smoothed values. 

Calculation of natural increases and decadal RNIs 
To calculate the natural (crude) increase, the five-model runs for urban CBR and 
urban CDR were combined to create five runs for urban RNIs, and the same was done 
for rural CBRs and CDRs. In the six entities where the rural population was 0, this was 
changed to 1 (thousand) in order to be able to calculate rural decadal RNIs. 

The decadal urban RNIs (per cent change due to natural increase over the decade) 
were calculated by multiplying the annual rates of natural increase for urban areas by 
the urban population and summing the population growth due to natural increase and 
dividing by the urban population at the start of the period. The same steps were used 
to calculate the rural rates. 
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Table C1: Variable code book. 

Variable name Type Format Label Source 

countryname str52 %52s Country name – 

uncode int %8.0g United Nations country code – 

ISOcode str4 %9s ISO three-character country code – 

uniID str7 %9s Unique ID – ISOcode + year – 

year int %9.0g Calendar year – 

totpop float %9.0g Total pop. (thousands) (UN) WUP (2009) 

urbpop str7 %9s Urban pop. string (UN) WUP (2009) 

_urbpop long %10.0g Urban pop. (thousands) (un) WUP (2009) 

rurpop float %9.0g Rural pop. (thousands) (UN) WUP (2009) 

pcturb str6 %9s Per cent urban string (UN) WUP (2009) 

_pcturb double %10.0g Per cent urban numeric (UN) WUP (2009) 

cntrycbr float %9.0g Original country CBR (per thousand) (UN) WPP (2008) 

allcbrcountry double %10.0g Interpolated country CBR (per thousand) Calculated 

cntrycdr float %9.0g Original country CDR (per thousand) (UN) WPP2008 

allcdrcountry double %10.0g Interpolated country CDR (per thousand) Calculated using STATA linear interpolation 

cntrynir float %9.0g Original country NIR (per thousand) (UN) WPP2008 

allnircountry double %10.0g Interpolated country NIR (per thousand) Calculated 

 



MR4 108 

Variable name Type Format Label Source 

cbr_cbidb float %9.0g CBIDB births per 1,000 population US Census Bureau International Database 

cdr_cbidb float %9.0g CBIDB deaths per 1,000 population US Census Bureau International Database 

nir_cbidb float %9.0g CBIDB natural increase rate (per thousand) US Census Bureau International Database 

gdppc float %9.0g GDP per capita 2000 constant US dollars Several 

gdp_source str8 %9s Source of GDP data See categories 

dyburbancbr float %9.0g DYB urban crude birth rate UN SD Demographic Yearbook 

dyburbancdr float %9.0g DYB urban crude death rate UN SD Demographic Yearbook 

dybruralcbr float %9.0g DYB rural crude birth rate UN SD Demographic Yearbook 

dybruralcdr float %9.0g DYB rural crude death rate UN SD Demographic Yearbook 

dhsurbancbr float %9.0g DHS urban crude birth rate DHS surveys through Statcompiler 

dhsruralcbr float %9.0g DHS rural crude birth rate DHS surveys through Statcompiler 

dhs_region str29 %29s DHS regional grouping DHS surveys through Statcompiler 

country_name str50 %50s Country name (from merges) – 

mdr byte %8.0g More developed region UN POP DIV regional grouping WPP2008 

ldr byte %8.0g Less developed region UN PD regional grouping WPP2008 

ltdr byte %8.0g Least developed region UN PD regional grouping WPP2008 

ldr_noleast byte %8.0g Less developed region without least developed UN PD regional grouping WPP2008 

oecd byte %8.0g OECD countries – 
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Variable name Type Format Label Source 

ssa byte %8.0g Sub-Saharan Africa – 

hiopec byte %8.0g High income OPEC – 

asia byte %8.0g Asia countries – 

fsu byte %8.0g Former Soviet Union – 

mena byte %8.0g Middle East and North Africa – 

whsrg byte %8.0g Western Hemisferio South of Rio Grande – 

rurpov float %8.0g Poverty headcount ratio at rural poverty line (% of rural pop.) 
(WDI) 

WDI 

urbpov float %8.0g Poverty headcount ratio at urban poverty line (% of urban 
pop.) (WDI) 

WDI 

_mergeA byte %8.0g – System variable 

_mergeB byte %8.0g – System variable 

pctubanjmp byte %8.0g % pop. urban (JMP) – 

pctruraljmp byte %8.0g % pop. rural (JMP) – 

urbwatsup int %8.0g % urban pop. with water supply – 

rurwatsup int %8.0g % rural pop. with water supply – 

watsup int %8.0g % total pop. with water supply – 

urbacsat byte %8.0g % urban pop. with access to improved sanitation – 

ruracsat byte %8.0g % rural pop. with access to improved sanitation – 
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Variable name Type Format Label Source 

acsat int %8.0g % total pop. with access to improved sanitation – 

_merge byte %8.0g – System variable 

dhsregion str29 %29s DHS region Demographic and health survey  

urban1q0 str5 %9s Urban1q0 = infant mortality (less than 1 year 0ld) urban 
areas 

Demographic and health survey 

urban4q1 str5 %9s Urban4q1 = child mortality (between ages 1 and 4) Demographic and health survey 

urban5q0 str5 %9s Urban5q0 = under-5 mortality  Demographic and health survey 

rural1q0 str5 %9s Rural1q0 Demographic and health survey 

rural4q1 str5 %9s Rural4q1 Demographic and health survey 

rural5q0 str5 %9s Rural5q0 Demographic and health survey 

total1q0 str5 %9s Total1q0 Demographic and health survey 

total4q1 str5 %9s Total4q1 Demographic and health survey 

total5q0 str5 %9s Total5q0 Demographic and health survey 

literacyurban str5 %9s LiteracyUrban: per cent distribution of women by level of 
schooling attended and by level of literacy, and per cent 
literate, according to background characteristics 

Demographic and health survey 

literacyrural str5 %9s LiteracyRural Demographic and health survey 

literacytotal str5 %9s LiteracyTotal Demographic and health survey 

development_reg str11 %11s UN pop. division development regions – 

agri_kd float %8.0g Agriculture value added per worker (constant USD2,000) WDI 
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Variable name Type Format Label Source 

UMDG7_water% – – MDG 7 pop. using improved drinking-water sources (%) 
urban 

WHO Global Health Observatory Data 
Repository 

RMDG7_water% – – MDG 7 pop. using improved drinking-water sources (%) rural WHO Global Health Observatory Data Repository 

TotMDG7_water% – – MDG 7 pop. using improved drinking-water sources (%) total WHO Global Health Observatory Data Repository 

UMDG7_sant% – – MDG 7 pop. using improved sanitation (%) urban WHO Global Health Observatory Data Repository 

RMDG7_sant% – – MDG 7 pop. using improved sanitation (%) rural WHO Global Health Observatory Data Repository 

TotMDG7_sant% – – MDG 7 pop. using improved sanitation (%) total WHO Global Health Observatory Data Repository 

whourbancbr – –  WHO urban CBR WHO Global Health Observatory Data Repository 

whourbancdr – – WHO urban CDR WHO Global Health Observatory Data Repository 

whoruralcbr – – WHO rural CBR WHO Global Health Observatory Data Repository 

whoruralcdr – – WHO rural CDR WHO Global Health Observatory Data Repository 

V1 – – Rural births attended by skilled health personnel %, 
WHS2010-RurBirth-SHP 

WHS2010-Health-Inequalities.csv 

V2 – – Urban births by skilled health personnel %, WHS2010-
UrbBirth-SHP 

WHS2010-Health-Inequalities.csv 

V5 – – Rural measles immunisation coverage among 1 year olds 
WHS2010-RurMeasImm–1yo 

WHS2010-Health-Inequalities.csv 

V6 – – Urban measles immunisation coverage among 1 year olds, 
WHS2010-UrbMeasImm–1yo 

WHS2010-Health-Inequalities.csv 

V9 – – Rural under five mortality rate (probability of dying by age 5 
per 1,000 live births), WHS2010-RurUnder5Mort 

WHS2010-Health-Inequalities.csv 
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Variable name Type Format Label Source 

V10 – – Urban under-5 mortality rate (probability of dying by age 5 
per 1,000 live births), WHS2010-UrbUnder5Mort 

WHS2010-Health-Inequalities.csv 

total_pop float %9.0g Total pop. (thousands) United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

tot60plus float %9.0g Total pop. age 60 and older (1,000) United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

tot_prop60 float %9.0g Proportion of total pop. age 60 and older United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

urbpop float %9.0g Total urban pop. (1,000) United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

urb60plus float %9.0g Urban pop. age 60 and older (1,000) United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

urb_prop60 float %9.0g Proportion of urban pop. age 60 and older United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

rurpop float %9.0g Total rural pop. (1,000) United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

rur60plus float %9.0g Rural pop. age 60 and older (1,000) United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

rur_prop60 double %10.0g Proportion of rural pop. age 60 and older United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

child0_4urb float %9.0g Urban children ages 0–4 United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

femurb15_49 float %9.0g Urban women ages 15–49 United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 
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Variable name Type Format Label Source 

urban_cwr float %9.0g Urban child–woman ratio United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

child0_4rur float %9.0g Rural children ages 0–4 United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

femrur15_49 float %9.0g Rural women ages 15–49 United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

rural_cwr str11 %11s rural_CWRrural child woman ratio United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

_rural_cwr double %10.0g Numerical rural child woman ratio United Nations – Population division – Urban and 
Rural Population by Age and Sex, 1950–2005 

_merge byte %8.0g – System variable 

 



 

                                           

Section C3 – Comparing the MI and Amelia packages for R 

The R package MI for MIs using chained equations 
The descriptions given in the following paragraphs are based on the article ‘Multiple Imputation 
with Diagnostics (MI) in R: Opening Windows into the Black Box’ by Yu-Sung Su, Andrew 
Gelman, Jennifer Hill and Masanao Yajima in the Journal of Statistical Software12, the most 
recent version available for download (version 0.09–14 from 2011–4–25) and from practical 
examples run in R v. 2.13.1. 

The MI package is based on chained equation regression imputation, which requires the 
specification of conditional models for each imputation variable conditional on predictor 
variables. The imputation algorithm sequentially iterates through the variables to impute the 
missing values using the specified model until the convergence criterion is satisfied. 

The analyst works through the following steps prior to running the MI() function and subsequent 
imputation analytics. They are aimed at giving more control over the imputation process and 
hence taking the ‘black box’ image out of MI. 

1. Set-up. 

2. Display of missing data patterns. 

3. Identifying structural problems in the data and pre-processing. 

4. Specifying the conditional models. 

5. Imputation. 

6. Iterative imputation based on the conditional model. 

7. Checking the fit of conditional models. 

8. Checking the convergence of the procedure. 

9. Checking to see if the imputed values are reasonable. 

10. Analysis. 

11. Obtaining completed data. 

12. Pooling the complete case analysis on multiple imputed datasets. 

13. Validation. 

14. Sensitivity analysis. 

 

12 http://www.stat.ucla.edu/~yajima/Publication/mipaper.rev04.pdf. 



 

15. Cross-validation. 

Important input information includes (a) the order in which the incomplete variables are to be 
imputed. This is not a trivial question since the different orderings will yield different results. 
One question that arises in this context is if variables with small amounts of missingness 
should be imputed prior to variables with higher fractions of missing values. Variable types also 
need to be specified correctly in order to ensure that the imputed values are sensible, for 
example fall within the permissible range of values for a given variable. The MI package offers 
pre-processing capabilities to identify up to 11 variable types and transform them appropriately 
(e.g. for positive continuous data or fractions). As is the case with all existing imputation 
programs, variables with 100% missingness are not imputed. The same holds for a variable 
that is completely collinear to another variable in the dataset (the MI package checks for that 
and imputes the excluded variable using the linear relationship between the two collinear 
variables). Additive constraints, on the other hand, are harder to detect and are dealt with by 
adding a user-controlled level of noise produced from an artificial set of prior distributions and 
adding the noise to the observed data (and hence preserving many of the variable’s 
distributional characteristics). A very useful capability of the MI package is the use of Bayesian 
model-fitting algorithms. Currently implemented are bayesglm() with Gaussian functions, 
binomial family with logit link function and quasi-poisson families for overdispersion models as 
well as bayespolr() for ordered logistic or probit modelling with independent normal, t or 
Cauchy prior distribution for the coefficients. 

Convergence of imputation chains is a notoriously tricky issue to ascertain and the MI package 
offers several parametric, statistical and graphical options for assessing it. To begin, MI() 
monitors the mixing of each variable by the variance of its mean and standard deviation within 
and between different chains of the imputation. Convergence is assumed if the R.hat statistic, 
that is, the difference of the within and between variance is trivial, smaller than 1:1 (Gelman et 
al., 2004). Additionally, by specifying MI(data, check.coef.convergence = TRUE...), users can 
check the convergence of the parameters of the conditional models. 

Imputation of incomplete datasets is only a means towards a greater end, that is, the actual 
analysis of the data. This means that the imputation model needs to be chosen wisely because 
it can be assumed that it is often not the model used to analyse the final dataset(s). Therefore, 
model assessment should be an integral part of MIs and the MI package contains several 
features for this purpose (the following excerpt is from the paper in the Journal of Statistical 
Software): 

Our MI addresses this problem with three strategies. 

1. Imputations are typically generated using models, such as regressions or multivariate 
distributions, which are fit to observed data. Thus, the fit of these models can be 
checked (Gelman et al., 2005). 

2. Imputations can be checked using a standard of reasonability: the differences between 
observed and missing values, and the distribution of the completed data as a whole, can 
be checked to see whether they make sense in the context of the problem being studied 
(Abayomi et al., 2008). 

3. We can use cross-validation to perform sensitivity analysis to violations of our 
assumptions. For instance, if we want to test the assumption of missing at random, after 
obtaining the completed dataset (original data plus imputed data) using MI, we can 



 

                                           

randomly create missing values on these imputed datasets and re-impute the missing 
data (Gelman et al., 1998). By comparing the imputed dataset before and after this test, 
we can assess the validity of the missing at random assumption. 

Advantages and their costs in the MI package 
The MI package is a new and powerful addition to the toolbox of statisticians, researchers and 
analysts who must deal with incomplete or missing data. It has a breadth of features that 
expand its applicability and give the users a higher level of control than is the case with many 
other software tools, although SAS MI and the R package Amelia are also heavily user-driven. 
However, additional features and control parameters in MI usually come at a cost. The MI user 
has to make a rather large number of decisions on what variables to impute, what model to use 
for it and how to check if the results are meaningful. This control is useful for experienced users 
but may be a challenging task for the occasional practitioner. Understanding basic statistical 
theory and regression modelling concepts is therefore recommended. In addition, the use of a 
chained equation regression approach (in a Bayesian framework) puts considerable demands 
on the computational capabilities of the user. While small datasets generally impute in a few 
minutes, larger and large datasets may take hours and days to complete. The MI() function is 
powerful in that it allows the individual specification of the imputation model for each variable. It 
may, however, also exponentially grow the risk of model misspecification, especially if the 
underlying data-generating process is assumed to be more complicated than it is in reality. 
Parsimony may be sacrificed for a misguided need for complexity. On the other hand, including 
rather more than fewer predictors in the regression model can assist with the Missing At 
Random assumption13. And while the MI package can already handle a fairly wide range of 
data types, time-series data (and panel data) with their inherent autocorrelation (spatial-
temporal correlation) structure are not yet included. 

Convergence diagnostics remain an active field of statistical research, and while methods and 
visual displays have become more sophisticated, there is still debate on what statistics to use. 
In the MI package, the risk is to abort the iteration process too quickly (the default is 30 
iterations), especially if iterations take a long time. Experiences with other glm and glmm 
modelling indicate that convergence can sometimes take several hundred iterations. 

The R package Amelia for MI of cross-sectional time series data 

The following information is sourced from the Amelia documentation14, the current version of 
Amelia (1.5–0 of 23 Nov 2010) and practical examples included in the documentation. Amelia 
is a program for MI of cross-sectional time series data based on the Missing At Random (MAR) 
assumption. It uses the EMB algorithm, which combines the classical expectation-maximisation 
algorithm of Dempster et al. (1977) with a bootstrapping component. The EMB algorithm in 
particular, saves time by first generating m bootstrapped sets of the data and then imputing 

 

13 Missing at random (MAR) means that the probability of a single value being missing depends only on other 
observed values but not the missing value itself. It is the most widely used assumption in imputation software. 
Missing Completely At Random (MCAR) is the strictest assumption and means that the probability of a value 
being missing is independent of both the missing value and other observed values. Not Missing At Random 
(NCAR) means that the probability of a value being missing may also depend on the missing value itself. This form 
of missing data generating mechanism is known to exist in certain survey and data collection areas, e.g. when 
asking people about the income: high and low income earners are less likely to state their true income. 

14 http://r.iq.harvard.edu/docs/amelia/amelia.pdf. 



each of these to generate m completed sets using the posterior distribution of the complete 
data parameter distribution. The general approach is schematised in Figure 1. 

The imputation model is likely to differ from the analysis model; however, when considering 
using Amelia to multiply impute missing data, the first step should be to identify the variables to 
include in the imputation model. Any variable that will or is likely to be in the analysis model 
should, if meaningful and feasible, also be in the imputation model, including any 
transformations or interactions of variables that will appear in the analysis model. Data 
permitting, inclusion of more information can be beneficial: since imputation is predictive, any 
variables that would increase predictive power should be included in the model, even if 
including them in the analysis model would produce bias in estimating a causal effect (such as 
for post-treatment variables) or collinearity would preclude determining which variable had a 
relationship with the dependent variable (such as including multiple alternate measures of 
gross domestic product). 

Figure 1: Overview of the steps taken in Amelia to produce m completed datasets 
(Source: Amelia documentation). 

 

The basic imputation model of Amelia is a multivariate normal due to its useful properties for 
fitting and sampling from it. Transformations of the variables should be considered if they would 
more closely fit the multivariate normal assumption: correct but omitted transformations will 
shorten the number of steps and improve the fit of the imputations. Amelia allows the 
specification of certain transformations (log, logistic, square root) as well of some variable 
types such as ordered categorical and nominal. The output is already back-transformed. 

Amelia is specifically designed to deal with cross-sectional time-series data, that is it requires 
identifiers for the time and the cross-section variables and has functionality build in to deal with 
autocorrelation and cross-sectional effects. The Amelia documentation (Honaker et al. 2011: 
20) states: 

Many variables that are recorded over time within a cross-sectional unit are observed to 
vary smoothly over time. In such cases, knowing the observed values of observations 
close in time to any missing value may enormously aid the imputation of that value. 
However, the exact pattern may vary over time within any cross-section. There may be 
periods of growth, stability or decline; in each of which the observed values would be 
used in a different fashion to impute missing values. Also, these patterns may vary 
enormously across different cross-sections, or may exist in some and not others. Amelia 

 



 

can build a general model of patterns within variables across time by creating a sequence 
of polynomials of the time index. 

Polynomials of time of up to the third degree are possible and can be interacted with cross-
sectional units to allow the patterns over time to vary between cross-sectional units. 
Alternatively, the temporal correlation aspect can be added to the model by including ‘lags’ and 
‘leads’. The latter may strike statisticians as unusual but the goal is not to build meaningful 
causal models but good predictive models for the missing data and there is no reason to 
believe that the future does not contain useful information about the past. Lastly, Amelia can 
incorporate prior believe about the missing data and their distribution in a number of ways: 
ridge priors and observation-level priors. Constraints on the range of values an imputation 
variable can take on can also be controlled by specifying logical bounds and Amelia 
implements them via rejection sampling. 

For imputation and model diagnostics, Amelia also has some built-in capacity that includes 
plots of the densities of observed and imputed values (also available in the MI package). 
Overimputing allows for each of the observed values to be treated as missing and produces 
several hundred imputed values for observed data that can be used to judge the quality of the 
imputations. The mean of the imputed values should be close to the observed value. 
Overdispersed starting values for the imputation chains helps to avoid a known pitfall of the EM 
algorithm, that is, getting stuck in a local region of the parameter space and producing non-
maximum likelihood estimates. Time series plots demonstrate if the different chains using 
dispersed starting values converge over the course of the iterations to the same parameter 
value. 

Advantages and their costs in the Amelia package 
Amelia is a multi-purpose imputation tool aimed at giving the user considerable flexibility in 
specifying imputation models and control parameters. As with the MI and other software tools, 
it is still recommended that the user has a basic understanding of the problems occurring in 
missing data situations and the options to deal with them. 

A general concern with Amelia is that many data commonly fail to fit to a multivariate normal 
distribution and using a multi-variate normal model in Amelia is one of its pertinent critiques. 
Nonetheless, much evidence in the literature (discussed in King et al., 2001) indicates that the 
multivariate normal model used in Amelia usually works well for the imputation stage even 
when discrete or non-normal variables are included and when the analysis stage involves 
these limited dependent variable models. 

Amelia’s flexibility in model specification is fairly high – allowing for various classes of 
variables, transformations, polynomials in time and their interaction with the cross-section 
variable – but it is not infinite and may not fit all situations. Amelia currently does not allow the 
use of random effects models. 

Just as in the case of the MI package, large datasets and/or large fractions of missing data 
slow down the imputation algorithm owing to their impact on the EM algorithm. The algorithm 
may fail altogether to converge. 

Imputation of variables that are logically linked, such as through theoretical and/or empirical 
relationships, cannot easily be accommodated in Amelia. Two possibilities are the use of 
observation-level priors and logical bounds on the values that can be imputed (e.g. if A = B + C 
and A is incomplete, then a logical bound for A could be B + C +/– delta). 



 

Comparison of the MI and Amelia packages in the context of estimating net 
migration 
The analysis presented in this report used both the MI and Amelia software tools to produce 
custom-tailored imputations of urban and rural crude birth and death rates. Each uses certain 
options and must also be seen within the constraints of available time and computing power. 
For example, the Amelia procedure was run with largely reduced sets of predictor variables 
because their inclusion extended the run time by a factor of 10 on the available personal 
computer and Macbook Pro. The MI procedure was run in parallel chains on a computer 
cluster, which allowed the use of all available information in a unified modelling framework, that 
is, simultaneous imputation of urban/rural birth and death data as opposed to their separate 
imputation in Amelia. On the other hand, time intervals between iterations were also 
considerable and therefore only 20 iterations were run, which may affect the convergence of 
the parameter estimates. 



 

Appendix D: Issues with currently available 
migration data 
In 2010, it is estimated that about 214 million people lived in a country different from the one 
they were born, or about 3% of the world’s population (UN Population Division, 2010). As for 
domestic migration, some estimates suggest that around 740 million people have migrated 
between level 1 administrative units (states and provinces) – that is, they live in their country of 
origin but have moved away from their town or region of birth (Bell and Muhidin, 2009). 
Migration has greatly accelerated with economic globalisation, yet the research community is 
stymied in its ability to characterise international and even domestic migration because of poor 
quality data and divergent definitions. 

Migration has been defined as a multi-dimensional and multi-faceted phenomenon for which 
there is no all-embracing theory (Portes, 1997; Brettel, 2000). In order to understand it, it is 
necessary to adopt a broad conceptual approach, incorporating multiple levels of analysis 
within a longitudinal perspective, keeping in mind that migration behaviour is embedded in 
social contexts and has temporal and spatial dimensions (Massey, 1990a,b; Portes, 1997; 
White and Lindstrom,  2005). 

Stocks and flows 

Population mobility can be measured in terms of stocks or flows (Bilsborrow et al., 1997: 51). 
Migrant stock, a static measure, is the number of people who identify themselves or are 
identified as migrants at a certain point in time. This count can be obtained through census 
questions relating to birth location, country of origin, or location of the individual as of the last 
census.  

Mobility can also be measured in terms of flows (inflows and outflows), which are counts of 
people moving into or out of an area over some period of time, generally a calendar year. This 
is a more problematic approach because ‘flows represent the dynamics of the process’ and 
‘they are considerable less tractable than stock measures’ (Bilsborrow et al. 1997). For 
example, people entering and leaving the country several times in one calendar year could be 
counted just once (just one person) or more than once (several moves) depending on the time 
criteria when defining mobility. 

Comparability problems in migration analysis 

Cross-country comparisons face several challenges owing to differences in collection practices, 
for example: (a) differences in the way migration is defined and measured, and the type of data 
derived; (b) issues of temporal comparability (length of the interval); (c) differences in coverage 
of population and quality of data; and (d) the spatial units used, the division of space and the 
measurement of distance, which in turn is related to how migration is defined (Bell et al. 2002; 
Parsons et al., 2007). 

Regarding (a), common sources of migration data are population censuses and registers, 
which report transitions (movers) and events (moves), respectively (Bell et al., 2002). Migration 
surveys provide richer data (e.g. places of residence, number of moves), but generally they 
cover small areas. In all cases, the selection of space and time frameworks affects the 



 

observation and measurement of the intensity and geographic pattern of migration flows. 
Temporal comparability across countries just makes these issues even more complicated. 

Age structure, a key to migration selectivity, affects aggregate levels of mobility, geographic 
patterns of movement and timing of migration. Quality of data is critical, and varies widely. 
Census undercounts, for example, are not random, but selective of certain groups, among 
them migrants. The analysis of migration is affected by the modifiable areal unit problem. 
Decisions about geographies are often restricted because data are only available for 
administrative units, which may or may not serve the needs of the research question or the 
problem at hand. Another issue affecting comparability over time is changes in the number and 
boundaries of the administrative units. 

Finally, variation in times intervals also affects comparability (Bell and Muhidin, 2009). 
Discontinuities in the data owing to country breakdown should be carefully monitored. 
Examples include the former Yugoslavia and Soviet Union. 

Sources of migration data 

Note that the full extent of the information collected on censuses and surveys may not be 
available because it has not been coded, remaining as raw data (Black and Skeldon, 2009). 

Population censuses 
A number of sources are derived from national population censuses complemented or not with 
other sources, as aggregates, microdata or both. Place of residence 5 years or 1 year before 
the census (recent migration), place of birth/citizenship (lifetime migration) and place of 
previous residence (with no defined time period) are common measures of migration in these 
sources. 

UN Global Migration Database and the International Migration Stock 

This database is the base of the International Migration Stock (UN Population Division, 2010). 
The original version includes sex and age of immigrants and emigrants, but this has still to be 
incorporated in the International Migration Stock. 

IPUMS International Collection 

The objective of this collection from the Minnesota Population Center is to inventory, preserve, 
harmonise and disseminate census microdata. It currently contains 55 countries, with several 
censuses for most of them. Data are coded and documented consistently across countries and 
over time to facilitate comparative research. The classical census migration questions (place of 
birth and place of residence at a fixed point before the census date) are divided in the IPUMS 
into two groups of variables at the individual level: nativity and birthplace variables, and 
migration. The main limitation is the small number of countries included. 

The Bilateral Migrant Stock Database [Development Research Centre on Migration, 
Globalisation and Poverty (Migration DRC)] 

This database comprises two origin–destination matrices, at the country level, for 226 countries 
and territories, based on the 2000 round of censuses. One matrix records foreign-born 
population by country of birth and the second the population by nationality (Parsons et al., 
2007: 3). The main objective of the database is ‘to include as many of the world's migrants as 



 

                                           

possible, to assign them all to specific countries of origin with the highest degree of accuracy 
and to produce as full and comparable a bilateral database of international migration stocks as 
is possible’ (Parsons et al., 2007: 9). The last available data from the original source were 
preferred, census mainly but also population registers. Data on both foreign born and foreign 
nationals were compiled where feasible.15 Population registers were then drawn upon where 
data were unavailable for the 2000 round of censuses. In some cases where neither source 
was available, data were obtained from reliable secondary sources that cited the original. 
Some regions of the world provide significantly better data than others, and some simply do not 
exist in the public domain or even at all. While the data for Europe, the Americas and much of 
Oceania are of a fair standard, the data for parts of Asia and much of Africa are of more 
dubious quality. 

UN World Population Prospects 

Include net migration rate and net migration for 5-year periods for approximately 198 countries, 
between 1950 and 2010. 

Others 

CELADE’s IMILA and MIALC databases and World Bank’s International Remittances. 

Registers and administrative records 
These can be considered as continuous systems. These include border statistics for 
international migration and immigration registration in port of entry and departure (which may or 
may not be publicly available). Less commonly, a register can also be used for internal 
migration, such as the household registration system in China (hukou system) or population 
registers in several European countries. 
Surveys 
Specialised migration surveys are of course the best tool for generating detailed data (Black 
and Skeldon, 2009). Global guidelines have been developed (Bilsborrow et al., 1984) as 
migration surveys require careful design and are usually expensive. It could take different 
forms, for example retrospectives migration histories (trajectories) or longitudinal surveys with 
several rounds of data collection. Examples include the Mexican Migration Project (MMP), the 
Latin American Migration Project (LAMP) and the Reseau Migrations et Urbanisation en 
Afrique de l'Ouest (REMUAO). 

Other surveys such as the Demographic and Health Surveys (DHS) and the Multiple Indicator 
Cluster Surveys (MICS) also provide some data on migration, although not consistently. 

Periodic surveys on labour forces and living conditions, and periodic household surveys on 
income and family expenses, could also be used for migration statistics. Migration questions 
are similar to the ones in the population censuses: place of birth, place of previous residence. 
Household surveys were used by the World Bank for the 2009 report. 

 

15 Foreign born are people born in a different country than the one in which they are living. Foreign nationals are 
people who are citizens of a country other than the one in which they are living. 



Appendix E: Characterising precision and 
accuracy of data inputs 
There are several ways in which the data inputs utilised here vary with respect to precision and 
accuracy, and some of these can be specified quantitatively. Here we review the sources of 
variation and present some high-level indicators. 

Size of census input units 

The gridded census dataset we utilise (CIESIN, 2011) is based on map inputs provided by 
national census authorities or other bodies assigning population totals to spatial units. These 
spatial units are typically administrative areas such as counties or districts; sometimes they are 
even smaller but sometimes they are larger. The smaller the input unit, the greater the spatial 
precision and the higher the accuracy of our gridded map. So, for Figures E1–E3, larger 
numbers reflect bigger average size of input units and therefore greater uncertainty. 

The only consistent correlate to census input size is population density: higher densities are 
associated with smaller input units. Levels of per-capita income are not correlated with this 
measure. Another correlate, which is more of an artefact of geopolitics, is that small countries 
tend to have smaller input units, simply because their country size sets an upper limit which is 
comparatively small. Therefore, the small island states have greater spatial precision than 
average. 

Figure E1: Mean size of original population data input units in square kilometres by 
ecosystem. 

 

 



Figure E2: Mean size of original population data input units in square kilometres by UN 
region. 

 

Figure E3: Mean size of original population data input units in square kilometres by 
ecosystem and UN region. 

 

 



Frequency of censuses 

In general, most countries take a census every 10 years; however, some countries supplement 
decadal censuses with additional mid-decade censuses and some are not able to undertake a 
census every decade. Failure to undertake a decadal census is usually associated with war or 
other political disruptions. Because political disruption is a driver of movement, we lack data 
inputs where we would most want them. Although there is not much variation in frequency of 
censuses by ecosystem (Figure E4), there is substantial variation by region (Figure E5). 

Figure E4: Mean number of censuses from 1970 to 2010 by ecosystem. 

 

Figure E4: Mean number of censuses from 1970 to 2010 by UN region. 

 

 



Figure E5: Mean number of censuses from 1970 to 2010 by UN region and ecosystem. 

 

Subnational variation in birth and death rates 

Because our method infers net migration from a comparison of observed population change 
with the population change expected from birth and death rates, our accuracy depends on the 
degree to which we can estimate spatially specific values for birth rates and death rates. There 
are few global databases that permit such inferences, although many countries have their own 
sources of data that would be relevant. Because of time limitations, we were limited to two 
global sources of information – the UN Demographic Yearbooks and the DHSs. Both sources 
provide estimates for many countries of birth rates and death rates stratified by urban and rural 
areas. For China, which had no such information in either source, we utilised country-specific 
information for 1990 (CITAS et al., 1997) to make sure that such a large and ecologically 
diverse area had subnational inputs on birth and death rates. 

Relying exclusively on urban/rural differences as the basis for inferring spatial patterns of birth 
and death rates is itself a source of inaccuracy. Owing to our previous experience generating 
subnational maps of infant mortality rates, we have some idea of the level of effort that would 
be required to generate higher quality spatial estimates of birth and death rates. Such a level 
was not feasible in the time frame available to us for the present effort. 

We use as a quantitative indicator of accuracy the number of data points, by country, reflecting 
urban/rural differences in birth and death rates. As can be seen from the following graphs, the 
number of observed birth and death rates varies substantially ecosystem (Figure E6) and by 
 



region (Figures E7 and E8) – with many of the republics of the former Soviet Union and 
Eastern European countries having a large number of data points up until the late 1980s, but 
comparatively few observations in Oceania, Africa and even North America. This may be a 
function of national reporting – the data certainly exist for many developed countries to 
compute urban and rural birth and death rates, but the interest in such data is limited, so these 
countries do not report their data to the United Nations. 

Figure E6: Mean number of urban/rural birth or death rate data points from 1970 to 2010 
by ecosystem. 

 

Figure E7: Mean number of urban/rural birth or death rate data points from 1970 to 2010 
by region. 

 

 



Figure E8: Mean number of urban/rural birth or death rate data points from 1970 to 2010 
by UN region and ecosystem. 
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